Skip to main content

Gas Migration Mechanisms

  • Chapter
  • First Online:
Natural Gas Seepage

Abstract

The basic principles and laws governing the migration of natural gases and their seepage to Earth’s surface are provided in this chapter by examining the geological factors or processes that influence physical parameters within transport equations. To offer a simple reference framework of seepage processes to readers without specialised knowledge of gas dynamics, migration mechanisms, diffusion and advection in their various forms are summarised without complex mathematics and using carefully controlled terminology. Oil migration is not the focus of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aplan FF (1966) Flotation. In: Kirk-Othmer (ed) Encyclopedia of chemical technology, 2nd edn. Wiley-Interscience Publications, New York

    Google Scholar 

  • Bear J (1972) Dynamics of fluids in porous media. Elsevier, New York

    Google Scholar 

  • Berbesi LA, di Primio R, Anka Z, Horsfield B, Wilkes H (2014) Methane leakage from evolving petroleum systems: masses, rates and inferences for climate feedback. Earth Planet Sci Lett 387:219–228

    Article  Google Scholar 

  • Brown A (2000) Evaluation of possible gas microseepage mechanisms. AAPG Bull 84:1775–1789

    Google Scholar 

  • Ciotoli G, Etiope G, Guerra M, Lombardi S, Duddridge GA, Grainger P (2005) Migration and behaviour of gas injected into a fault in low-permeability ground. Q J Eng Geol Hydroge 38:305–320

    Article  Google Scholar 

  • Clift R, Grace JR, Weber ME (1978) Bubbles, drops and particles. Academic Press, New York

    Google Scholar 

  • Etiope G (1998) Transport of radioactive and toxic matter by gas microbubbles in the ground. J Environ Radioact 40:11–13

    Article  Google Scholar 

  • Etiope G, Lombardi S (1996) Laboratory simulation of geogas microbubble flow. Environ Geol 27:226–232

    Google Scholar 

  • Etiope G, Martinelli G (2002) Migration of carrier and trace gases in the geosphere: an overview. Phys Earth Planet In 129:185–204

    Article  Google Scholar 

  • Etiope G, Drobniak A, Schimmelmann A (2013) Natural seepage of shale gas and the origin of “eternal flames” in the Northern Appalachian Basin, USA. Mar Pet Geol 43:178–186

    Article  Google Scholar 

  • Frenkel J (1955) Kinetic theory of liquids. Dover, New York

    Google Scholar 

  • Gascoyne M, Wuschke DM (1992) Gas flow in saturated fractured rock: results of a field test and comparison with model predictions. In: “Gas generation and release from Rad.Waste Rep.”, Proceedings of the NEA Workshop, Aix en Provence, 23–26 Sept 1991

    Google Scholar 

  • Goldenberg LC, Hutcheon I, Wardlaw N (1989) Experiments on transport of hydrophobic particles and gas bubbles in porous media. Transport Porous Med 4:129–145

    Article  Google Scholar 

  • Harbert W, Jones VT, Izzo J, Anderson TH (2006) Analysis of light hydrocarbons in soil gases, Lost River region, West Virginia: relation to stratigraphy and geological structures. AAPG Bull 90:715–734

    Article  Google Scholar 

  • Heggland R (1998) Gas seepage as an indicator of deeper prospective reservoirs. A study on exploration 3D seismic data. Mar Pet Geol 15:1–9

    Article  Google Scholar 

  • Heinicke J, Koch U (2000) Slug flow—a possible explanation for hydrogeochemical earthquake precursors at Bad Brambach, Germany. Pure Appl Geophys 157:1621–1641

    Article  Google Scholar 

  • Hermansson HP, Sjoblom R, Akerblom G (1991) Geogas in crystalline bedrock. Statens Kärnbränsle Nämnd (SKN) report 52, Stockholm

    Google Scholar 

  • Holub RF, Hovorka J, Reimer GM, Honeyman BD, Hopke PK, Smrz PK (2001) Further investigations of the ‘Geoaerosol’ phenomenon. J Aerosol Sci 32:61–70

    Article  Google Scholar 

  • Hunt JM (1996) Petroleum geochemistry and geology. W.H. Freeman and Co, New York, 743 pp

    Google Scholar 

  • Illing VC (1933) Migration of oil and natural gas. Inst Petrol Technol J 19:229–274

    Google Scholar 

  • Jones VT, Thune HW (1982) Surface detection of retort gases from an underground coal gasification reactor in steeply dipping beds near Rawlins, Wyoming. In: Society of Petroleum Engineers, SPE paper 11050, p 24

    Google Scholar 

  • Klusman RW, Saeed MA (1996) A comparison of light hydrocarbon microseepage mechanisms. In: Schumacher D, Abrams MA (eds) Hydrocarbon migration and its near surface effects. AAPG Memoir 66:157–168

    Google Scholar 

  • Krcmár B, Vylita T (2001) Unfilterable “geoaerosols”, their use in the search for thermal, mineral and mineralized waters, and their possible influence on the origin of certain types of mineral waters. Environ Geol 40:678–682

    Article  Google Scholar 

  • Kristiansson K, Malmqvist L, Persson W (1990) Geogas prospecting: a new tool in the search for concealed mineralizations. Endeavour 14:28–33

    Article  Google Scholar 

  • Lerman A (1979) Geochemical Processes, water and sediment environments. Wiley Interscience Publications, New York

    Google Scholar 

  • Lineham TR, Nash PJ, Rodwell WR, Bolt J, Watkins VMB, Grainger P, Heath MJ, Merefield JR (1996) Gas migration in fractured rock: results and modelling of a helium gas injection experiment at the Reskajeage Farm Test Site, SW England, UK. J Contam Hydrol 21:101–113

    Article  Google Scholar 

  • Loseth H, Gading M, Wensaas L (2009) Hydrocarbon leakage interpreted on seismic data. Mar Pet Geol 26:1304–1319

    Article  Google Scholar 

  • MacElvain R (1969) Mechanics of gaseous ascension through a sedimentary column. In: Heroy WB (ed) Unconventional methods in exploration for petroleum and natural gas. Southern Methodist University Press, Dallas, pp 15–28

    Google Scholar 

  • Malmqvist L, Kristiansson K (1984) Experimental evidence for an ascending microflow of geogas in the ground. Earth Planet Sci Lett 70:407–416

    Article  Google Scholar 

  • Malmqvist L, Kristiansson K (1985) A physical mechanism for the release of free gases in the lithosphere. Geoexploration 23:447–453

    Article  Google Scholar 

  • Martinelli G, Ferrari G (1991) Earthquake forerunners in a selected area of northern Italy: recent developments in automatic geochemical monitoring. Tectonophysics 193:397–410

    Article  Google Scholar 

  • Mesler R (1986) Bubble nucleation. In: Cheremisinoff NP (ed) Gas-liquid flows, Encyclopedia of fluid mechanics, vol 3, Gulf Pub Co

    Google Scholar 

  • Mogro-Campero A, Fleischer RL (1977) Subterrestrial fluid convection: a hypothesis for long-distance migration of radon within the Earth. Earth Planet Sci Lett 34:321–325

    Article  Google Scholar 

  • Muskat M (1946) The flow of homogeneous fluids through porous media. Edwards Inc., Ann Arbor, Michigan

    Google Scholar 

  • Pandey GN, Rasintek M, Katz DL (1974) Diffusion of fluids through porous media with implication in petroleum geology. AAPG Bull 58:291–303

    Google Scholar 

  • Pattenden NJ, Cambray RS, Playford K (1981) Trace elements in the sea-surface microlayer. Geochim Cosmochim Ac 45:93–100

    Article  Google Scholar 

  • Peirson DH, Cawse PA, Cambray RS (1974) Chemical uniformity of airborne particulate material and a maritime effect. Nature 251:675–679

    Article  Google Scholar 

  • Price LC (1986) A critical overview and proposed working model of surface geochemical exploration. In: Unconventional methods in exploration for petroleum and natural gas IV, Southern Methodist University Press, pp 245–309

    Google Scholar 

  • Saunders D, Burson KR, Thompson CK (1999) Model for hydrocarbon microseepage and related near-surface alterations. AAPG Bull 83:170–185

    Google Scholar 

  • Schrauf TW, Evans DD (1986) Laboratory studies of gas flow through a single natural fracture. Water Resour Res 22:1038–1050

    Article  Google Scholar 

  • Teller AJ, Miller SA, Scheibel EG (1963) Liquid-gas systems. In: Perry JH (ed) Chemical Engineers’ Handbook, McGraw-Hill Book Co, New York

    Google Scholar 

  • Tsuge H (1986) Hydrodynamics of bubble formation from submerged orifices. In: Cheremisinoff NP (ed) Encyclopedia of fluid mechanics, vol 3. Gulf Publishing Co., Houston

    Google Scholar 

  • Várhegyi A, Baranyi I, Somogyi G (1986) A model for the vertical subsurface radon transport in “geogas” microbubbles. Geophys Trans 32:235–253

    Google Scholar 

  • Walker MI, McKay WA, Pattenden NJ, Liss PS (1986) Actinide enrichment in marine aerosols. Nature 323:141–143

    Article  Google Scholar 

  • Witherspoon PA, Saraf DN (1965) Diffusion of methane, ethane, propane, and n-Butane in water from 25 to 43. J Phys Chem 69:3752–3755

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Etiope .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Etiope, G. (2015). Gas Migration Mechanisms. In: Natural Gas Seepage. Springer, Cham. https://doi.org/10.1007/978-3-319-14601-0_3

Download citation

Publish with us

Policies and ethics