Skip to main content

Structural and Functional Developmental Perspectives of the Placental Barrier and Its Role in the Fetal Development During the First and Second Trimesters

  • Chapter
  • First Online:
Human Fetal Growth and Development

Abstract

The term placenta has been derived from the Latin word meaning ‘Cake’ and the Greek word for ‘flat slab like structure’. The primary function of the placenta is to act as a fetomaternal organ and a barrier with two of its components, the fetal placenta also termed as the “Chorion frondosum” and the maternal placenta termed as “Decidua basalis”. The fetal placenta develops from the blastocyst and the maternal placenta from the maternal uterine tissues. The first concept regarding the presence of a fetomaternal or a placental barrier was coined around 46 years ago by using transport physiology and ultrastructural analysis. However in terms of evolutionary trend it is observed that the human fetomaternal barrier which is 10 nm size is less selective than the epitheliochorial barriers in animals. The metabolic capacity of the trophoblast and macrophage along with the fetal blood cells plays an important role in the fetomaternal barrier in the first trimester and the early stages of second trimester by metabolizing and converting harmful toxins into less harmful substrates and by also forming a sequential barrier to the maternal activated immune cells. Also the placenta plays a very important role in providing a micro niche which supports the fetal growth through transfer of nutrients and immunological properties which helps in imparting protective immunological properties to the fetus. It also acts as a major fetomaternal barrier against pathogens and the maternal immune system. Placenta also undertakes the secretion of different hormones, cytokines, growth factors and other bioactive products essential for the fetus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 149.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Placenta, World Publishing Library, World Heritage Encyclopedia.

    Google Scholar 

  2. Maternal fetal barrier. Pedia View.com. Open source encyclopedia.

    Google Scholar 

  3. Challier JC. The placental barrier: structure, resistance, asymmetry. Reprod Nutr Dev. 1989;29:703.

    Article  CAS  PubMed  Google Scholar 

  4. Zorzi W, Thellin O, Coumans B, Melot F, Hennen G, Lakaye B, Igout A, Heinen E. Demonstration of the expression of CD95 ligand transcript and protein in human placenta. Placenta. 1998;19:269.

    Article  CAS  PubMed  Google Scholar 

  5. Bhattacharya N, Stubblefield P, editors. Frontiers of cord blood science. ISBN: 978-1-84800-166-4 e-ISBN: 978-1-84800-167-1. doi:10.1007/978-1-84800-167-1.

    Google Scholar 

  6. Singh I. Human embryology. 5th ed. Chapter 4. Formation of germ layers. Madras: McMillan India Press. 1993. p. 42.

    Google Scholar 

  7. Gilbert SF. Developmental biology. 6th edition. Sunderland (MA): Sinauer Associates; 2000. Early Mammalian Development. Available from: http://www.ncbi.nlm.nih.gov/books/NBK10052/.

  8. Polin RA, Fox WW, Abman SH. Fetal and neonatal physiology. vol 2 4th ed. Saunders, Elsevier. Chapter 2 section 11, 2004.

    Google Scholar 

  9. Fox P, Benirschke K, Kaufmann P, Baergen R. Pathology of the human placenta. 5th ed. New York: Springer; 2006.

    Google Scholar 

  10. Baergen RN. Manual of the human placenta. Chapter 5. 2nd ed. Springer 2011.

    Google Scholar 

  11. Boyd JD, Hamilton WJ. The human placenta. Cambridge: W Heffer & Sons; 1970.

    Book  Google Scholar 

  12. Kaufmann P, Huppertz B, Frank HG. The fibrinoids of the human placenta: origin, composition and functional relevance. Anat Anz. 1996;178(6):485–501. Review.

    Article  CAS  Google Scholar 

  13. http://www.embryology.ch/anglais/fplacenta/villosite07.html.

  14. Gruenwald P. The development of the placental lobular pattern in the human. Review and reinterpretation of the material. Obstet Gynecol. 1977;49(6):728–32. Review.

    Google Scholar 

  15. Benirschke K, Kaufmann P, Baergen R. Pathology of the human placenta. 5th ed. New York: Springer; 2006.

    Google Scholar 

  16. Macara LM, Kingdom JCP, Kaufmann P, et al. Control of the fetoplacental circulation. Fetal Matern Med Rev. 1993;5:167.

    Article  Google Scholar 

  17. Baker PN, Kingdom J. Pre-eclampsia current perspectives on management. London: The Parthenon Publishing Group; 2004.

    Google Scholar 

  18. Robertson WB, Brosens IA, Dixon HG. Placental bed vessels. Am J Obstet Gynecol. 1973;117:294–5.

    Article  CAS  PubMed  Google Scholar 

  19. Roberts JM, Taylor RN, Musci TJ, Rogers GM, Hubel CA, Mc Laughlin MK. Preeclampsia: an endothelial cell disorder. Am J Obstet Gynecol. 1989;161:1200–4.

    Article  CAS  PubMed  Google Scholar 

  20. Babawale MO, Mobberley MA, Ryder TA, Elder MG, Sullivan MH. Ultrastructure of the early human feto-maternal interface co-cultured in vitro. Hum Reprod. 2002;17:1351–7.

    Article  CAS  PubMed  Google Scholar 

  21. Lyall F. Priming and remodelling of human placental bed spiral arteries during pregnancy – a review. Placenta. 2005;26(Suppl A):S31–6.

    Article  PubMed  Google Scholar 

  22. Reiter RJ, Tan DX, Korkmaz A, RosalesCorral SA. Melatonin and stable circadian rhythms optimize maternal, placental and fetal physiology. Hum Reprod Update. 2013;20(2):293–307. doi:10.1093/humupd/dmt054. ISSN 13554786.

    Article  PubMed  Google Scholar 

  23. Schneider H, Danko J, Huch R, Huch A. Homeostasis of fetal lactate metabolism in late pregnancy and the changes during labor and delivery. Eur J Obstet Gynecol Reprod Biol. 1984;17:183–92.

    Article  CAS  PubMed  Google Scholar 

  24. Blechner JN. Maternal-fetal acid-base physiology. Clin Obstet Gynecol. 1993;36:3–12.

    Article  CAS  PubMed  Google Scholar 

  25. Kaufmann P, Mayhew TM, Charnock-Jones DS. Aspects of human fetoplacental vasculogenesis and angiogenesis. II. Changes during normal pregnancy. Placenta. 2004;25:114–26.

    Article  CAS  PubMed  Google Scholar 

  26. Mulvany MJ, Aalkjaer C. Structure and function of small arteries. Physiol Rev. 1990;70:921–61.

    CAS  PubMed  Google Scholar 

  27. Myatt L, Brewer AS, Langdon G, Brockman DE. Attenuation of the vasoconstrictor effects of thromboxane and endothelin by nitric oxide in the human fetal placental circulation. Am J Obstet Gynecol. 1992;166:224–30.

    Article  CAS  PubMed  Google Scholar 

  28. Myatt L, Webster RP. Vascular biology of preeclampsia. J Thromb Haemost. 2009;7:375–84.

    Article  CAS  PubMed  Google Scholar 

  29. Wang Y, Zhao S. Vascular biology of the placenta. San Rafael: Morgan & Clypool Life Sciences; 2010.

    Google Scholar 

  30. Chaudhuri G, Furuya K. Endothelium-derived vasoactive substances in fetal placental vessels. Semin Perinatol. 1991;15:63–7.

    CAS  PubMed  Google Scholar 

  31. Mc Carthy AL, Woolfson RG, Evans BJ, Davies DR, Raju SK, Poston L. Functional characteristics of small placental arteries. Am J Obstet Gynecol. 1994;170:945–51.

    Google Scholar 

  32. Khalil RA, Granger JP. Vascular mechanisms of increased arterial pressure in preeclampsia: lessons from animal models. Am J Physiol Regul Integr Comp Physiol. 2002;283:R29–45.

    Article  CAS  PubMed  Google Scholar 

  33. Maigaard S, Forman A, Andersson KE. Relaxant and contractile effects of some amines and prostanoids in myometrial and vascular smooth muscle within the human uteroplacental unit. Acta Physiol Scand. 1986;128:33–40.

    Article  CAS  PubMed  Google Scholar 

  34. Allen J, Skajaa K, Maigaard S, Forman A. Effects of vasodilators on isolated human uteroplacental arteries. Obstet Gynecol. 1991;77:765–71.

    CAS  PubMed  Google Scholar 

  35. Brosens IA, Robertson WB, Dixon HG. The role of the spiral arteries in the pathogenesis of preeclampsia. Obstet Gynecol Annu. 1972;1:177–91.

    CAS  PubMed  Google Scholar 

  36. Pijnenborg R, Anthony J, Davey DA, Rees A, Tiltman A, Vercruysse L, Van Assche A. Placental bed spiral arteries in the hypertensive disorders of pregnancy. Br J Obstet Gynaecol. 1991;98:648–55.

    Article  CAS  PubMed  Google Scholar 

  37. Lyall F. Mechanisms regulating cytotrophoblast invasion in normal pregnancy and pre-eclampsia. Aust N Z J Obstet Gynaecol. 2006;46:266–73.

    Article  PubMed  Google Scholar 

  38. Huppertz B. The feto-maternal interface: setting the stage for potential immune interactions. Semin Immunopathol. 2007;29:83–94.

    Article  PubMed  Google Scholar 

  39. Maynard SE, Min JY, Merchan J, Lim KH, Li J, Mondal S, Libermann TA, Morgan JP, Sellke FW, Stillman IE, Epstein FH, Sukhatme VP, Karumanchi SA. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest. 2003;111:649–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Demir R, Kayisli UA, Seval Y, Celik-Ozenci C, Korgun ET, Demir-Wuesten AY, Huppertz B. Sequential expression of VEGF and its receptors in human placental villi during very early pregnancy: differences between placental vasculogenesis and angiogenesis. Placenta. 2004;25:560–72.

    Article  CAS  PubMed  Google Scholar 

  41. Kaufmann P, Sen DK, Schweikhart G. Classification of human placental villi. I. Histology. Cell Tissue Res. 1979;200:409–23.

    Article  CAS  PubMed  Google Scholar 

  42. Pijnenborg R, Robertson WB, Brosens I, Dixon G. Review article: trophoblast invasion and the establishment of haemochorial placentation in man and laboratory animals. Placenta. 1981;2:71–91.

    Article  CAS  PubMed  Google Scholar 

  43. Huppertz B, Abe E, Murthi P, Nagamatsu T, Szukiewicz D, Salafia C. Placental angiogenesis, maternal and fetal vessels—a workshop report. Placenta. 2007;28(Suppl A):S94–6.

    Article  PubMed  Google Scholar 

  44. Goldenberg RL, Iams JD, Miodovnik M, Van Dorsten JP, Thurnau G, Bottoms S, Mercer BM, Meis PJ, Moawad AH, Das A, Caritis SN, Mc Nellis D. The preterm prediction study: risk factors in twin gestations. National Institute of Child Health and Human Development Maternal-Fetal Medicine Units Network. Am J Obstet Gynecol. 1996;175:1047–53.

    Article  CAS  PubMed  Google Scholar 

  45. King BF. Absorption of peroxidase-conjugated immunoglobulin G by human placenta: an in vitro study. Placenta. 1982;3:395–406.

    Article  CAS  PubMed  Google Scholar 

  46. Faber JJ, Thornburg KL. The forces that drive inert solutes from water across the epitheliochorial placenta of the sheep and the goat and the hemochorial placentae of the rabbit and the guinea pig. 1981.

    Google Scholar 

  47. Sibley CP, Boyd RDH. Control of transfer across the mature placenta. In: Clarke JR, editor. Oxford reviews of reproductive biology. Oxford: Oxford University Press; 1988. p. 382–435.

    Google Scholar 

  48. Faber JJ. Diffusional exchange between foetus and mother as a function of the physical properties of diffusing materials. In: Comline KS, Cross KW, Dawes GS, Nathanielsz PW, editors. Fetal and neonatal physiology. Cambridge: Cambridge University Press; 1973. p. 306–27.

    Google Scholar 

  49. Tran A, O’Mahoney T, Rey E, et al. Vigabatrin: placental transfer in vivo and excretion into breast milk of the enantiomers. Br J Clin Pharmacol. 1998;45:409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Capece BP, Pérez R, Andaluz A, et al. Placental transfer of albendazole sulphoxide enantiomers in sheep. Vet J. 2002;163:155.

    Article  CAS  PubMed  Google Scholar 

  51. Lagrange F, Pehourcq F, Bannwarth B, et al. Passage of S- (+) – and R- (–) – ketotifen across the human isolated perfused placenta. Fundam Clin Pharmacol. 1998;12:286.

    Article  CAS  PubMed  Google Scholar 

  52. Mathias A, Hitti J, Unadkat J. P-glycoprotein expression in human placenta of various gestational ages. Am J Physiol Regul Integr Comp Physiol. 2005;289:R963–9.

    Article  CAS  PubMed  Google Scholar 

  53. Patel P, Weeraskekera N, Hitchins M, et al. Semi-quantitative expression analysis of MDR3, FIC1, BSEP, OATP-A, OATP-C, OATP-D, OATP-E and NTCP gen transcript in 1st and 3rd trimester human placenta. Placenta. 2003;24:39–44.

    Article  CAS  PubMed  Google Scholar 

  54. Cordon-Cardo C, O’Brien JP, Casals D, Rittman- Grauer L, Biedler JL, Melamed MR, Bertino JR. Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites. Proc Natl Acad Sci U S A. 1989;86:695–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Smit JW, Huisman MT, van Tellingen O, Wiltshire HR, Schinkel AH. Absence of pharmacological blocking of placental P-glycoprotein profoundly increases fetal drug exposure. J Clin Invest. 1999;104:1441–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nakamura Y, Ikeda S-i, Furukawa T, Sumizawa T, Tani A, Akiyama S-i, Nagata Y. Function of P-glycoprotein expressed in placenta and mole. Biochem Biophys Res Commun. 1997;235:849–53.

    Article  CAS  PubMed  Google Scholar 

  57. Ushigome F, Takanaga H, Matsuo H, Yanai S, Tsukimori K, Nakano H, Uchiumi T, Nakamura T, Kuwano M, Ohtani H, Sawada Y. Human placental transport of vinblastine, vincristine, digoxin and progesterone: contribution of P-glycoprotein. Eur J Pharmacol. 2000;408:1–10.

    Article  CAS  PubMed  Google Scholar 

  58. Lankas GR, Wise LD, Cartwright ME, Pippert T, Umbenhauer DR. Placental P-glycoprotein deficiency enhances susceptibility to chemically induced birth defects in mice. Reprod Toxicol. 1998;12:457–63.

    Article  CAS  PubMed  Google Scholar 

  59. Tanabe M, Ieiri I, Nagata N, Inoue K, Ito S, Kanamori Y, Takahashi M, Kurata Y, Kigawa J, Higuchi S, Terakawa N, Otsubo K. Expression of P-glycoprotein in human placenta: relation to genetic polymorphism of the multidrug resistance (MDR)-1 gene. J Pharmacol Exp Ther. 2001;297:1137–43.

    CAS  PubMed  Google Scholar 

  60. Unadkat JD, Dahlin A, Vijay S. Placental drug transporters. Curr Drug Metab. 2004;5:125–31.

    Article  CAS  PubMed  Google Scholar 

  61. Sun M, Kingdom J, Baczyk D, Lye SJ, Matthews SG, Gibb W. Expression of the multidrug resistance P-glycoprotein, (ABCB1 glycoprotein) in the human placenta decreases with advancing gestation. Placenta. 2006;27:602–9.

    Article  CAS  PubMed  Google Scholar 

  62. Kalabis GM, Kostaki A, Andrews MH, Petropoulos S, Gibb W, Matthews SG. Multidrug resistance phosphoglycoprotein (ABCB1) in the mouse placenta: fetal protection. Biol Reprod. 2005;73:591–7.

    Article  CAS  PubMed  Google Scholar 

  63. May K, Minarikova V, Linnemann K, Zygmunt M, Kroemer HK, Fusch C, Siegmund W. Role of the multidrug transporter proteins ABCB1 and ABCC2 in the diaplacental transport of talinolol in the term human placenta. Drug Metab Dispos. 2008;36:740–4.

    Article  CAS  PubMed  Google Scholar 

  64. Syme M, Paxton J, Keelan J. Drug transfer and metabolism by the human placenta. Clin Pharmacokinet. 2004;43:487–514.

    Article  CAS  PubMed  Google Scholar 

  65. Włoch S, Pałasz A, Kamiński M. Active and passive transport of drugs in the human placenta. Ginekol Pol. 2009;80:772–7.

    PubMed  Google Scholar 

  66. Evseenko D, Paxton J, Keelan J. Active transport across the human placenta: impact on drug efficacy and toxicity. Expert Opin Drug Metab Toxicol. 2006;2:51–69.

    Article  CAS  PubMed  Google Scholar 

  67. Pascolo L, Fernetti C, Pirulli D, et al. Effects of maturation on RNA transcription and protein expression of four MRP genes in human placenta and in behio cells. Biochem Biophys Res Commun. 2003;303:259–65.

    Article  CAS  PubMed  Google Scholar 

  68. Billingham RE, Medawar PB. ‘Actively acquired tolerance’ of foreign cells. Nature. 1953;172:603–6.

    Article  CAS  PubMed  Google Scholar 

  69. Hoskin DW, Murgita RA. Specific maternal anti-fetal lymphoproliferative responses and their regulation by natural immunosuppressive factors. Clin Exp Immunol. 1989;76:262–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Thellin O, Coumans B, Zorzi W, Igout† A, Heinen E. Tolerance to the foeto-placental ‘graft’: ten ways to support a child for nine months. Curr Opin Immunol. 2000;12:731–7.

    Article  CAS  PubMed  Google Scholar 

  71. Saito S. Cytokine network at the feto-maternal interface. J Reprod Immunol. 2000;47:87.

    Article  CAS  PubMed  Google Scholar 

  72. Parham P. NK cells and trophoblasts: partners in pregnancy. JEM. 2004;200:951.

    Article  CAS  Google Scholar 

  73. Loke YW, King A. Immunology of implantation. Baillieres Best Pract Res Clin Obstet Gynaecol. 2000;14:827.

    Article  CAS  PubMed  Google Scholar 

  74. King A, Boocock C, Sharley AM, Gardner L, Beretta A, Siccardi AG, Loke YW. Evidence for the expression of HLA-C class I mRNA and protein by human first trimester trophoblast. J Immunol. 1996;156:2068–76.

    CAS  PubMed  Google Scholar 

  75. Moreau P, Paul P, Rouas-Freiss N, Kirszenbaum M, Dausset J, Carosella ED. Molecular and immunologic aspects of the nonclassical HLA class I antigen HLA-G: evidence for an important role in the maternal tolerance of the fetal allograft. Am J Reprod Immunol. 1998;40:136–44.

    Article  CAS  PubMed  Google Scholar 

  76. Ben-Hur H, Gurevich P, Berman V, Tchanyshev R, Gurevich E, Zusman I. The secretory immune system as part of the placental barrier in the second trimester of pregnancy in humans. In Vivo. 2001;15:429–39.

    CAS  PubMed  Google Scholar 

  77. Fox H. Normal and abnormal placentation. In: Reece EA, Hobbins JC, editors. Medicine of the fetus and mother. Philadelphia: Lippincott-Raven Publ; 1999. p. 47.

    Google Scholar 

  78. Weetman AP. The immunology of pregnancy. Thyroid. 1999;9:643.

    Article  CAS  PubMed  Google Scholar 

  79. Christiansen OB, Mohapeloa HP, Pedersen B, Rosgaard A. Is the expression of classical HLA class I antigens on trophoblast of importance for human pregnancy? Am J Reprod Immunol. 1998;40:158.

    Article  CAS  PubMed  Google Scholar 

  80. Hutter H, Hammer A, Dohr G, Hunt JS. HLA expression at the maternal-fetal interface. Dev Immunol. 1998;6:197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bulla R, Bossi F, Radillo O, de Seta F, Tedesco F. Placental trophoblast and endothelial cells as target of maternal immune response. Autoimmunity. 2003;36:11.

    Article  CAS  PubMed  Google Scholar 

  82. Zusman I, Gurevich P, Ben-Hur H. Immune systems and human intrauterine development. The fetus book. Chapter 1. Transworld Research Network, 2008.

    Google Scholar 

  83. Brandtzaeg P, Berstad AE, Farstad IN, Haraldsen G, Helgeland L, Jahnsen FL, Johansen FE, Natvig IB, Nilsen EM, Rugtveit J. Mucosal immunity – a major adaptive defense mechanism. Behring Inst Mitt. 1997;98:1.

    CAS  PubMed  Google Scholar 

  84. Gurevich P, Elhayany A, Ben-Hur H, Moldavsky M, Szvalb S, Zandbank J, Schneider I, Zusman I. An immunohistochemical study of the secretory immune system in human fetal membranes and decidua of the first trimester of pregnancy. Am J Reprod Immunol. 2003;50:13.

    Article  PubMed  Google Scholar 

  85. Goldblum RM, Hansen LÅ, Brandtzaeg P. The mucosal defense system. In: Stiehm ER, editor. Immunologic disorders in infants and children. Philadelphia: Saunders Publ. Co.; 1996. p. 159.

    Google Scholar 

  86. McGhee JR, Kiyono H. The mucosal immune system. In: Paul WE, editor. Fundamental immunology. Philadelphia: Lippincott-Raven Publ; 1999. p. 909.

    Google Scholar 

  87. Iijima H, Takahashi I, Kiyono H. Mucosal immune network in the gut for the control of infectious diseases. Rev Med Virol. 2001;11:117.

    Article  CAS  PubMed  Google Scholar 

  88. Brandtzaeg P. Molecular and cellular aspects of secretory immunoglobulin system. Acta Pathol Microbiol Immunol Scand. 1995;103:1.

    Article  CAS  Google Scholar 

  89. Brandtzaeg P. The human intestinal immune system: basic cellular and humoral mechanisms. Baillieres Clin Rheumatol. 1996;10:1.

    Article  CAS  PubMed  Google Scholar 

  90. Ackerman J, Gonzalez EF, Gilbert-Barness E. Immunological studies of the placenta in maternal connective tissue disease. Pediatr Dev Pathol. 1999;2:19.

    Article  CAS  PubMed  Google Scholar 

  91. Aherne W, Dunnill MS. Quantitative aspects of placental structure. J Pathol Bacteriol. 1966;91:123.

    Article  CAS  PubMed  Google Scholar 

  92. Reik W, Walter J. Genomic imprinting: parental influence on the genome. Nat Rev Genet. 2001;2:21–32.

    Article  CAS  PubMed  Google Scholar 

  93. Santos F, Hendrich B, Reik W, Dean W. Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev Biol. 2002;241:172–82.

    Article  CAS  PubMed  Google Scholar 

  94. Nelissen ECM, van Montfoort APA, Dumoulin JCM, Evers JLH. Epigenetics and the placenta. Hum Reprod Update. 2011;17(3):397–417.

    Article  CAS  PubMed  Google Scholar 

  95. Wong NC, Novakovic B, Weinrich B, Dewi C, Andronikos R, Sibson M, Macrae F, Morley R, Pertile MD, Craig JM, et al. Methylation of the adenomatous polyposis coli (APC) gene in human placenta and hypermethylation in choriocarcinomacells. Cancer Lett. 2008;268:56–62.

    Article  CAS  PubMed  Google Scholar 

  96. Novakovic B, Rakyan V, Ng HK, Manuelpillai U, Dewi C, Wong NC, Morley R, Down T, Beck S, Craig JM, et al. Specific tumour-associated methylation in normal human term placenta and first-trimester cytotrophoblasts. Mol Hum Reprod. 2008;14:547–54.

    Article  CAS  PubMed  Google Scholar 

  97. Torres-Padilla ME, Parfitt DE, Kouzarides T, Zernicka-Goetz M. Histone arginine methylation regulates pluripotency in the early mouse embryo. Nature. 2007;445:214–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. O’Carroll D, Erhardt S, Pagani M, Barton SC, Surani MA, Jenuwein T. The polycomb-group gene Ezh2 is required for early mouse development. Mol Cell Biol. 2001;21:4330–6.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Pasini D, Bracken AP, Jensen MR, Lazzerini Denchi E, Helin K. Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity. Embo J. 2004;23:4061–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Guillemot F, Nagy A, Auerbach A, Rossant J, Joyner AL. Essential role of Mash-2 in extraembryonic development. Nature. 1994;371:333–6.

    Article  CAS  PubMed  Google Scholar 

  101. Salas M, John R, Saxena A, Barton S, Frank D, Fitzpatrick G, Higgins MJ, Tycko B. Placental growth retardation due to loss of imprinting of Phlda2. Mech Dev. 2004;121:1199–210.

    Article  CAS  PubMed  Google Scholar 

  102. Angiolini E, Fowden A, Coan P, Sandovici I, Smith P, Dean W, Burton G, Tycko B, Reik W, Sibley C, et al. Regulation of placental efficiency for nutrient transport by imprinted genes. Placenta. 2006;27:S98–102.

    Article  PubMed  Google Scholar 

  103. Ono R, Nakamura K, Inoue K, Naruse M, Usami T, Wakisaka-Saito N, Hino T, Suzuki-Migishima R, Ogonuki N, Miki H, et al. Deletion of Peg10, an imprinted gene acquired from a retrotransposon, causes early embryonic lethality. Nat Genet. 2006;38:101–6.

    Article  CAS  PubMed  Google Scholar 

  104. Constancia M, Hemberger M, Hughes J, Dean W, Ferguson-Smith A, Fundele R, Stewart F, Kelsey G, Fowden A, Sibley C, et al. Placental-specific IGF-II is a major modulator of placental and fetal growth. Nature. 2002;417:945–8.

    Article  CAS  PubMed  Google Scholar 

  105. Sibley CP, Coan PM, Ferguson-Smith AC, Dean W, Hughes J, Smith P, Reik W, Burton GJ, Fowden AL, Constancia M. Placental-specific insulin-like growth factor 2 (Igf2) regulates the diffusional exchange characteristics of the mouse placenta. Proc Natl Acad Sci U S A. 2004;101:8204–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Takata K, Hirano H. Mechanism of glucose transport across the human and rat placental barrier: a review. Microsc Res Tech. 1997;38:145.

    Article  CAS  PubMed  Google Scholar 

  107. Bell AW, Hay Jr WW, Ehrhardt RA. Placental transport of nutrients and its implications for fetal growth. J Reprod Fertil Suppl. 1999;54:401.

    CAS  PubMed  Google Scholar 

  108. Saji F, Samejima Y, Kamiura S, Koyama M. Dynamics of immunoglobulins at the feto-maternal interface. Rev Reprod. 1999;4:81.

    Article  CAS  PubMed  Google Scholar 

  109. Jauniaux E, Gulbis B. In vivo investigation of placental transfer early in human pregnancy. Eur J Obstet Gynecol Reprod Biol. 2000;92:45.

    Article  CAS  PubMed  Google Scholar 

  110. Jauniaux E, Jurkovic D, Gulbis B, Liesnard C, Lees C, Campbell S. Materno-fetal immunoglobulin transfer and passive immunity during the first trimester of human pregnancy. Hum Reprod. 1995;10:3297.

    Article  CAS  PubMed  Google Scholar 

  111. Okoko BJ, Wesumperuma HL, Fern J, Yamuah LK, Hart CA. The transplacental transfer of IgG subclasses: influence of prematurity and low birthweight in the Gambian population. Ann Trop Paediatr. 2002;22:325.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niranjan Bhattacharya Dsc, MD, MS, FSOG, FICS, FACS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sengupta, P. et al. (2016). Structural and Functional Developmental Perspectives of the Placental Barrier and Its Role in the Fetal Development During the First and Second Trimesters. In: Bhattacharya, N., Stubblefield, P. (eds) Human Fetal Growth and Development. Springer, Cham. https://doi.org/10.1007/978-3-319-14874-8_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14874-8_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14873-1

  • Online ISBN: 978-3-319-14874-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics