Skip to main content

Part of the book series: SpringerBriefs in Materials ((BRIEFSMATERIALS))

Abstract

Fundamentals of metal matrix composites are overviewed. The various light metal matrix systems (particularly Al and Mg) and the different types of reinforcements used are mentioned. The various composite production methods are described. Strengthening mechanisms that define the enhancement in properties of composites are discussed. The microstructural and mechanical properties of the composites are summarized. In addition, the several disadvantages encountered in MMCs due to ceramic reinforcement addition are understood from interfacial characteristic/properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasipour B, Niroumand B, Monir Vaghefi SM (2010) Compocasting of A356-CNT composite. Trans Nonferrous Met Soc China 20:1561–1566. doi:10.1016/S1003-6326(09)60339-3

    Article  Google Scholar 

  • Abramov O (1994) Ultrasound in liquid and solid metals. CRC Press, Boca Raton

    Google Scholar 

  • Ahmed A, Neely AJ, Shankar K et al (2010) Synthesis, tensile testing, and microstructural characterization of nanometric SiC particulate-reinforced Al 7075 matrix composites. Metall Mater Trans A 41:1582–1591. doi:10.1007/s11661-010-0201-y

    Article  Google Scholar 

  • Arsenault R (1983) Particulate mcirostructure of fiber and SiC in 6061 Al composites. Scr Metall 17:67–71

    Article  Google Scholar 

  • Balog M, Yu P, Qian M et al (2013) Nanoscaled Al–AlN composites consolidated by equal channel angular pressing (ECAP) of partially in situ nitrided Al powder. Mater Sci Eng A 562:190–195

    Article  Google Scholar 

  • Bathula S, Anandani RC, Dhar A, Srivastava K (2012) Microstructural features and mechanical properties of Al 5083/SiCp metal matrix nanocomposites produced by high energy ball milling and spark plasma sintering. Mater Sci Eng A 545:97–102. doi:10.1016/j.msea.2012.02.095

    Article  Google Scholar 

  • Brown L, Stobbs W (2006) The work-hardening of copper-silica v. equilibrium plastic relaxation by secondary dislocations. Philos Mag 34:351–372

    Article  Google Scholar 

  • Cao G, Konishi H, Li X (2008) Mechanical properties and microstructure of SiC-reinforced Mg-(2,4)Al-1Si nanocomposites fabricated by ultrasonic cavitation based solidification processing. Mater Sci Eng A 486:357–362. doi:10.1016/j.msea.2007.09.054

    Article  Google Scholar 

  • Chawla N, Chawla K (2006) Metal matrix composites. Springer, New York

    Google Scholar 

  • Chawla K, Metzger M (1978) Advances in research on strength and fracture of materials, vol 3. Pergamon Press, New York, p 1039

    Google Scholar 

  • Chen SH, Jin PP, Schumacher G, Wanderka N (2010) Microstructure and interface characterization of a cast Mg2B2O5 whisker reinforced AZ91D magnesium alloy composite. Compos Sci Technol 70:123–129. doi:10.1016/j.compscitech.2009.09.015

    Article  Google Scholar 

  • Contreras A (2004) Mg/TiC composites manufactured by pressureless melt infiltration. Scr Mater 51:249–253. doi:10.1016/j.scriptamat.2004.04.007

    Article  Google Scholar 

  • Daoud A, Reif W (2002) Influence of Al2O3 particulate on the aging response of A356 Al-based composites. J Mater Process Technol 123:313–318. doi:10.1016/S0924-0136(02)00103-6

    Article  Google Scholar 

  • Das A, Chatterjee S (1981) Squeeze casting of an aluminium alloy containing small amounts of SiC whiskers. Metall Mater Technol 137

    Google Scholar 

  • Delanney F, Frozen L, Peryttere A (1987) Review—the wetting of solids by molten metals and its relation to the preparation of metal-matrix composites. J Mater Sci 22:1

    Article  Google Scholar 

  • Dieter GE (1988) Mechanical metallurgy. McGraw-Hill Higher Education, London

    Google Scholar 

  • Donthamsetty S, Damera NR, Jain PK (2009) Ultrasonic cavitation assisted fabrication and characterization of A356 metal matrix nanocomposite reinforced with Sic, B4C, CNTs. Asian Int J Sci Technol Prod Manuf Eng 2:27–34

    Google Scholar 

  • Ellis M (1996) Joining of aluminium based metal matrix composites. Int Mater Rev 41:41–58

    Article  Google Scholar 

  • Erman A, Groza J, Li X et al (2012) Nanoparticle effects in cast Mg-1 wt% SiC nano-composites. Mater Sci Eng A 558:39–43. doi:10.1016/j.msea.2012.07.048

    Article  Google Scholar 

  • Esawi MK, Morsi K, Sayed A et al (2010) Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites. Compos Sci Technol 70:2237–2241. doi:10.1016/j.compscitech.2010.05.004

    Article  Google Scholar 

  • Evans R, Boyd J (2003) Near-interface microstructure in a SiC/Al composite. Scr Mater 49:59–63. doi:10.1016/S1359-6462(03)00180-5

    Article  Google Scholar 

  • Evans A, Marchi CS, Mortensen A (2003) Metal matrix composites in industry: an introduction and a survey, vol 1. Springer, New York

    Book  Google Scholar 

  • Ezatpour HR, Sajjadi SA, Sabzevar MH et al (2014) Investigation of microstructure and mechanical properties of Al6061-nanocomposite fabricated by stir casting. Mater Des 55:921–928

    Google Scholar 

  • Fecht H (1995) Nanostructure formation by mechanical attrition. Nanostruct Mater 6:33–42

    Article  Google Scholar 

  • Fridlyander J (1994) Metal matrix composites. Springer, New York

    Google Scholar 

  • Friedrich HE, Mordike BL (2006) Magnesium technology: metallurgy, design data, automotive applications. Springer, Berlin

    Google Scholar 

  • Garcia-Hinojosa JA, Gonzalez CR, Juarez JAI, Surrapa MK (2004) Effect of grain refinement treatment on the microstructure of cast Al–7Si–SiCp composites. Mater Sci Eng A 386:54–60. doi:10.1016/j.msea.2004.07.020

    Article  Google Scholar 

  • Ghomashchi M, Vikhrov A (2000) Squeeze casting: an overview. J Mater Process Technol 101:1–9

    Article  Google Scholar 

  • Girot FA, Quenisset JM, Naslain R (1987) Discontinuously reinforced Al metal matrix composites. Compos Sci Technol 30:155–184

    Article  Google Scholar 

  • Goh CS, Wei J, Lee LC, Gupta M (2006) Simultaneous enhancement in strength and ductility by reinforcing magnesium with carbon nanotubes. Mater Sci Eng A 423:153–156. doi:10.1016/j.msea.2005.10.071

    Article  Google Scholar 

  • Goh CS, Wei J, Lee LC, Gupta M (2008) Ductility improvement and fatigue studies in Mg-CNT nanocomposites. Compos Sci Technol 68:1432–1439. doi:10.1016/j.compscitech.2007.10.057

    Article  Google Scholar 

  • Gu J, Zhang X, Gu M (2004) Mechanical properties and damping capacity of (SiCp+Al2O3·SiO2f)/Mg hybrid metal matrix composite. J Alloys Compd 385:104–108. doi:10.1016/j.jallcom.2004.04.106

    Article  Google Scholar 

  • Gu X, Zhou W, Zheng Y et al (2010) Microstructure, mechanical property, bio-corrosion and cytotoxicity evaluations of Mg/HA composites. Mater Sci Eng C 30:827–832. doi:10.1016/j.msec.2010.03.016

    Article  Google Scholar 

  • Gupta M, Eugene WWL (2007) Microwaves and metals. Wiley, Hoboken

    Book  Google Scholar 

  • Gupta M, Sharon NML (2011) Magnesium, magnesium alloys, and magnesium composites. Wiley, Hoboken

    Book  Google Scholar 

  • Harris SJ (1988) Cast metal matrix composites. Mater Sci Technol 4:231

    Article  Google Scholar 

  • Hassan SF, Gupta M (2005) Enhancing physical and mechanical properties of Mg using nanosized Al2O3 particulates as reinforcement. Metall Mater Trans A 36:2253–2258

    Article  Google Scholar 

  • Heinrich M, Gonasagren G (2012) Semi-solid processing of alloys and composites XII. Trans Tech Publication, Durnten-Zurich

    Google Scholar 

  • Hong C, Kim J (2006) Development of an advanced rheocasting process and its application. In: Proceeding of the ninth international conference on the processing of semi-solid alloys and composite, Busan, Korea, pp 44–53

    Google Scholar 

  • Hossein-Zadeh M, Mirzaee O, Saidi P (2014) Structural and mechanical characterization of Al-based composite reinforced with heat treated Al2O3 particles. Mater Des 54:245–250. doi:10.1016/j.matdes.2013.08.036

    Article  Google Scholar 

  • Hu L, Wang E (2000) Fabrication and mechanical properties of SiCw/ZK51A magnesium matrix composite by two-step squeeze casting. Mater Sci Eng A 278:267–271. doi:10.1016/S0921-5093(99)00608-5

    Article  Google Scholar 

  • Hu B, Peng L, Powell BR et al (2010) Interfacial and fracture behavior of short-fibers reinforced AE44 based magnesium matrix composites. J Alloys Compd 504:527–534. doi:10.1016/j.jallcom.2010.05.155

    Article  Google Scholar 

  • Jayalakshmi S, Kailas SV, Seshan S (2002) Tensile behaviour of squeeze cast AM100 magnesium alloy and its Al2O3 fibre reinforced composites. Compos Part A Appl Sci Manuf 33:1135–1140

    Article  Google Scholar 

  • Jayalakshmi S, Kailas SV, Seshan S, Fleury E (2006) Properties of squeeze cast Mg-6Zn-3Cu alloy and its saffil alumina short fibre reinforced composites. J Mater Sci 41:3743–3752. doi:10.1007/s10853-005-4484-0

    Article  Google Scholar 

  • Jayaramanavar P, Paramsothy M, Balaji A, Gupta M (2009) Tailoring the tensile/compressive response of magnesium alloy ZK60A using Al2O3 nanoparticles. J Mater Sci 45:1170–1178. doi:10.1007/s10853-009-4059-6

    Article  Google Scholar 

  • Kamali Ardakani MR, Khorsand S, Amirkhanlou S, Javad Nayyeri M (2014) Application of compocasting and cross accumulative roll bonding processes for manufacturing high-strength, highly uniform and ultra-fine structured Al/SiCp nanocomposite. Mater Sci Eng A 592:121–127

    Article  Google Scholar 

  • Kandemir S, Yalamanchili A, Atkinson H (2012) Production of aluminium matrix nanocomposite feedstock for thixoforming by an ultrasonic method. Key Eng Mater 504–506:339–344

    Article  Google Scholar 

  • Kaufmann H, Uggowitzer P (2001) Fundamentals of the new rheocasting process for magnesium alloys. Adv Eng Mater 3:963

    Article  Google Scholar 

  • Kennedy AR, Weston DP, Jones MI (2001) Reaction in Al–TiC metal matrix composites. Mater Sci Eng A 316:32–38. doi:10.1016/S0921-5093(01)01228-X

    Article  Google Scholar 

  • Kimura Y, Mishima Y, Umekawa S, Suzuki T (1984) Compatibility between carbon fibre and binary aluminium alloys. J Mater Sci 19:3107

    Article  Google Scholar 

  • Koli DK, Agnihotri G, Purohit R (2013) Properties and characterization of Al-Al2O3 composites processed by casting and powder metallurgy routes (review). Int J Latest Trends Eng Technol 2:486–496

    Google Scholar 

  • Krishnan B, Surappa M, Rohatgi P (1981) The UPAL process: a direct method of preparing cast aluminium alloy-graphite particle composites. J Mater Sci 16:1209

    Article  Google Scholar 

  • Lee KB, Sim HS, Cho SY, Kwon H (2001) Reaction products of Al–Mg/B4C composite fabricated by pressureless infiltration technique. Mater Sci Eng A 302:227–234. doi:10.1016/S0921-5093(00)01831-1

    Article  Google Scholar 

  • Lee KB, Sim HS, Heo SW et al (2002) Tensile properties and microstructures of Al composite reinforced with BN particles. Compos Part A Appl Sci Manuf 33:709–715. doi:10.1016/S1359-835X(02)00011-8

    Article  Google Scholar 

  • Lee C, Huang J, Hsieh P (2006) Mg based nano-composites fabricated by friction stir processing. Scr Mater 54:1415–1420. doi:10.1016/j.scriptamat.2005.11.056

    Article  Google Scholar 

  • Li Q, Rottmair C, Singer R (2010) CNT reinforced light metal composites produced by melt stirring and by high pressure die casting. Compos Sci Technol 70:2242–2247

    Article  Google Scholar 

  • Liao J, Tan M-J, Sridhar I (2010) Spark plasma sintered multi-wall carbon nanotube reinforced aluminum matrix composites. Mater Des 31:S96–S100. doi:10.1016/j.matdes.2009.10.022

    Article  Google Scholar 

  • Lii D-F, Huang J-L, Chang S-T (2002) The mechanical properties of AlN/Al composites manufactured by squeeze casting. J Eur Ceram Soc 22:253–261. doi:10.1016/S0955-2219(01)00255-2

    Article  Google Scholar 

  • Lloyd DJ (1994) Particle reinforced aluminium and magnesium matrix composites. Int Mater Rev 39:1–23. doi:10.1179/095066094790150982

    Article  Google Scholar 

  • Long A, Thornhill D, Armstrong A, Watson D (2012) Predicting die life from die temperature for high pressure dies casting aluminium alloy. Appl Therm Eng 44:100–107

    Article  Google Scholar 

  • Luo ZP, Song YG, Zhang SQ (2001) A TEM study of the microstructure of SiCp/Al composite prepared by pressureless infiltration method. Scr Mater 45:1183–1189

    Article  Google Scholar 

  • Manna A, Bhattacharayya B (2003) A study on machinability of Al/SiC-MMC. J Mater Process Technol 140:711–716

    Article  Google Scholar 

  • Maruyama B (1998) Progress and promise in aluminium metal matrix composites. AMPTIAC NewsLett 2(3)

    Google Scholar 

  • Mazahery A, Shabani MO (2012) Mechanical properties of A356 matrix composites reinforced with nano-SiC particles. Strength Mater 44:686–692

    Article  Google Scholar 

  • Metcalfe AG (1974) Interfaces in metal matrix composites. In: Metcalfe AG (ed) Composite materials. Academic, New York

    Google Scholar 

  • Miller W, Humphreys FJ (1991) Strengthening mechanisms in particulate metal matrix composites. Scr Metall Mater 25:33–38

    Article  Google Scholar 

  • Miracle D (2005) Metal matrix composites—from science to technological significance. Compos Sci Technol 65:2526–2540

    Article  Google Scholar 

  • Mortenson A, Flemmings JA, Cornie MC (1988) Solidification processing of metal matrix composites. J Appl Meteorol 40:12–19

    Google Scholar 

  • Mula S, Padhi P, Panigrahi SC et al (2009) On structure and mechanical properties of ultrasonically cast Al–2% Al2O3 nanocomposite. Mater Res Bull 44:1154–1160. doi:10.1016/j.materresbull.2008.09.040

    Article  Google Scholar 

  • Naher S, Brabazon D, Looney L (2005) Development and assessment of a new quick quench stir caster design for the production of metal matrix composites. J Mater Process Technol 166:430–439

    Article  Google Scholar 

  • Nardone V, Prewo K (1986) On the strength of discontinuous silicon carbide reinforced aluminium composites. Scr Metall 20:43–48

    Article  Google Scholar 

  • Nguyen QB, Gupta M (2008) Increasing significantly the failure strain and work of fracture of solidification processed AZ31B using nano-Al2O3 particulates. J Alloys Compd 459:244–250. doi:10.1016/j.jallcom.2007.05.038

    Article  Google Scholar 

  • Nguyen QB, Gupta M (2010) Enhancing mechanical response of AZ31B using Cu+nano-Al2O3 addition. Mater Sci Eng A 527:1411–1416. doi:10.1016/j.msea.2009.11.002

    Article  Google Scholar 

  • Nie KB, Wang XJ, Wu K et al (2011) Processing, microstructure and mechanical properties of magnesium matrix nanocomposites fabricated by semisolid stirring assisted ultrasonic vibration. J Alloys Compd 509:8664–8669. doi:10.1016/j.jallcom.2011.06.091

    Article  Google Scholar 

  • Noguchi T, Asano K, Hiratsuka S, Miyahara H (2008) Trends of composite casting technology and joining technology for castings in Japan. Int J Cast Met Res 21:219–225

    Article  Google Scholar 

  • Paramsothy M, Hassan SF, Srikanth N, Gupta M (2009) Enhancing tensile/compressive response of magnesium alloy AZ31 by integrating with Al2O3 nanoparticles. Mater Sci Eng A 527:162–168. doi:10.1016/j.msea.2009.07.054

    Article  Google Scholar 

  • Paramsothy M, Hassan SF, Srikanth N, Gupta M (2010) Simultaneous enhancement of tensile/compressive strength and ductility of magnesium alloy AZ31 using carbon nanotubes. J Nanosci Nanotechnol 10:956–964. doi:10.1166/jnn.2010.1809

    Article  Google Scholar 

  • Reed-Hill R (1973) Role of deformation twinning in determining the mechanical properties of metals: In: The inhomogeneity of plastic deformation. ASM International, Materials Park

    Google Scholar 

  • Rohatgi PK, Asthana R, Das S (1986) Solidification, structures and properties of cast metal-ceramic particle composites. Int Met Rev 31:115

    Article  Google Scholar 

  • Saheb N, Iqbal Z, Khalil A et al (2012) Spark plasma sintering of metals and metal matrix nanocomposites: a review. J Nanomater 2012:1–13. doi:10.1155/2012/983470

    Article  Google Scholar 

  • Sairam K, Sonber J, Murthy T et al (2013) Influence of spark plasma sintering parameters on densification and mechanical properties of boron carbide. Int J Refract Met Hard Mater 42:185–192

    Article  Google Scholar 

  • Saito Y, Utsunomiya H, Tsuji N, Sakai T (1999) Novel ultra-high straining process for bulk materials—development of the accumulative roll-bonding (ARB) process. Acta Mater 47:579–583

    Article  Google Scholar 

  • Sajjadi S, Torabi Parizi M, Ezatpour H, Sedghi A (2012) Fabrication of A356 composite reinforced with micro and nano Al2O3 particles by a developed compocasting method and study of its properties. J Alloys Compd 511:226–231

    Article  Google Scholar 

  • Sankaranarayanan S, Jayalakshmi S, Gupta M (2011) Effect of ball milling the hybrid reinforcements on the microstructure and mechanical properties of Mg–(Ti+n-Al2O3) composites. J Alloys Compd 509:7229–7237. doi:10.1016/j.jallcom.2011.04.083

    Article  Google Scholar 

  • Schultz BF, Ferguson JB, Rohatgi PK (2011) Microstructure and hardness of Al2O3 nanoparticle reinforced Al–Mg composites fabricated by reactive wetting and stir mixing. Mater Sci Eng A 530:87–97. doi:10.1016/j.msea.2011.09.042

    Article  Google Scholar 

  • Segal V (1999) Equal channel angular extrusion: from macromechanics to structure formation. Mater Sci Eng A 271:322–333

    Article  Google Scholar 

  • Shorowordi KM, Laoui T, Haseeb ASMA et al (2003) Microstructure and interface characteristics of B4C, SiC and Al2O3 reinforced Al matrix composites: a comparative study. J Mater Process Technol 142:738–743. doi:10.1016/S0924-0136(03)00815-X

    Article  Google Scholar 

  • Sklenicka V, Dvorak J, Svoboda M et al (2013) Equal-channel angular pressing and creep in ultrafine-grained aluminium and its alloys. In: Ahmad Z (ed) Aluminium alloys—new trends in fabrication and applications. InTech, Rijeka

    Google Scholar 

  • Stacey MH (1988) Production and characterization of fibres for MMCs. Mater Sci Technol 4:227–230

    Article  Google Scholar 

  • Su H, Gao W, Feng Z, Lu Z (2012) Processing, microstructure and tensile properties of nano-sized Al2O3 particle reinforced aluminum matrix composites. Mater Des 36:590–596. doi:10.1016/j.matdes.2011.11.064

    Article  Google Scholar 

  • Sun K, Shi QY, Sun YJ, Chen GQ (2012) Microstructure and mechanical property of nano-SiCp reinforced high strength Mg bulk composites produced by friction stir processing. Mater Sci Eng A 547:32–37. doi:10.1016/j.msea.2012.03.071

    Article  Google Scholar 

  • Surappa M (2003) Aluminium matrix composites: challenges and opportunities. Sadhana 28:319

    Article  Google Scholar 

  • Suryanarayana C (2001) Mechanical alloying and milling. Prog Mater Sci 46:1–184

    Article  Google Scholar 

  • Suryanarayana C (2011) Synthesis of nanocomposites by mechanical alloying. J Alloys Compd 509:S229–S234. doi:10.1016/j.jallcom.2010.09.063

    Article  Google Scholar 

  • Suryanarayana C, Al-Aqeeli N (2013) Mechanically alloyed nanocomposites. Prog Mater Sci 58:383–502. doi:10.1016/j.pmatsci.2012.10.001

    Article  Google Scholar 

  • Suslick KS, Didenko Y, Fang MM, Hyeon T, Kolbeck KJ, McNamara WB et al (1999) Acoustic cavitation and its chemical consequences. Philos Trans R Soc Lond A 357:335–353

    Article  Google Scholar 

  • Tee KL, Lu L, Lai MO (2000) Synthesis of in situ Al±TiB2 composites using stir cast route. Compos Struct 47:589–593

    Article  Google Scholar 

  • Tekmen C, Ozdemir I, Cocen U, Onel K (2003) The mechanical response of Al–Si–Mg/SiCp composite: influence of porosity. Mater Sci Eng A 360:365–371. doi:10.1016/S0921-5093(03)00461-1

    Article  Google Scholar 

  • Thakur SK, Balasubramanian K, Gupta M (2007a) Microwave synthesis and characterization of magnesium based composites containing nanosized SiC and hybrid (SiC+Al[sub 2]O[sub 3]) reinforcements. J Eng Mater Technol 129:194. doi:10.1115/1.2400279

    Article  Google Scholar 

  • Thakur SK, Kwee GT, Gupta M (2007b) Development and characterization of magnesium composites containing nano-sized silicon carbide and carbon nanotubes as hybrid reinforcements. J Mater Sci 42:10040–10046. doi:10.1007/s10853-007-2004-0

    Article  Google Scholar 

  • Thakur SK, Srivatsan TS, Gupta M (2007c) Synthesis and mechanical behavior of carbon nanotube–magnesium composites hybridized with nanoparticles of alumina. Mater Sci Eng A 466:32–37. doi:10.1016/j.msea.2007.02.122

    Article  Google Scholar 

  • Tjong S (2007) Novel nanoparticle-reinforced metal matrix composites with enhanced mechanical properties. Adv Eng Mater 9:639–652

    Article  Google Scholar 

  • Tun KS, Gupta M (2009) Development of magnesium/(yttria+nickel) hybrid nanocomposites using hybrid microwave sintering: microstructure and tensile properties. J Alloys Compd 487:76–82. doi:10.1016/j.jallcom.2009.07.117

    Article  Google Scholar 

  • Tun KS, Jayaramanavar P, Nguyen QB et al (2012) Investigation into tensile and compressive responses of Mg-ZnO composites. Mater Sci Technol 28:582–588. doi:10.1179/1743284711Y.0000000108

    Article  Google Scholar 

  • Uozumi H, Kobayashi K, Nakanishi K et al (2008) Fabrication process of carbon nanotube/light metal matrix composites by squeeze casting. Mater Sci Eng A 495:282–287

    Article  Google Scholar 

  • Vicens J, Chedru M, Chermant JL (2002) New Al–AlN composites fabricated by squeeze casting: interfacial phenomena. Compos Part A Appl Sci Manuf 33:1421–1423

    Article  Google Scholar 

  • Wang Y, Huang J (2003) Texture analysis in hexagonal materials. Mater Chem Phys 81:11–26. doi:10.1016/S0254-0584(03)00168-8

    Article  Google Scholar 

  • Wang SJ, Wu GQ, Li RH et al (2006) Microstructures and mechanical properties of 5 wt.% Al2Yp/Mg–Li composite. Mater Lett 60:1863–1865. doi:10.1016/j.matlet.2005.12.038

    Article  Google Scholar 

  • Wang L, Turnley P, Savage G (2011) Gas content in high pressure die castings. J Mater Process Technol 211:1510–1515

    Article  Google Scholar 

  • Wang XJ, Nie KB, Sa XJ et al (2012) Microstructure and mechanical properties of SiCp/MgZnCa composites fabricated by stir casting. Mater Sci Eng A 534:60–67. doi:10.1016/j.msea.2011.11.040

    Article  Google Scholar 

  • Witkin D, Lavernia E (2006) Synthesis and mechanical behavior of nanostructured materials via cryomilling. Prog Mater Sci 51:1–60

    Article  Google Scholar 

  • Xiong B, Xu Z, Yan Q et al (2011) Effects of SiC volume fraction and aluminum particulate size on interfacial reactions in SiC nanoparticulate reinforced aluminum matrix composites. J Alloys Compd 509:1187–1191. doi:10.1016/j.jallcom.2010.09.171

    Article  Google Scholar 

  • Yang Y, Lan J, Li X (2004) Study on bulk aluminum matrix nano-composite fabricated by ultrasonic dispersion of nano-sized SiC particles in molten aluminum alloy. Mater Sci Eng A 380:378–383. doi:10.1016/j.msea.2004.03.073

    Article  Google Scholar 

  • Yasunori M, Hiroto T, Atsushi S (1996) Method and apparatus for shaping semisolid metals. EP0745694B1

    Google Scholar 

  • Ye H, Liu X (2004) Review of recent studies in magnesium. J Mater Sci 9:6153–6171

    Article  Google Scholar 

  • Ye J, He J, Schoenung J (2005) Cryomilling for the fabrication of a particulate B4C reinforced Al nanocomposite: part I. Effects of process conditions on structure. Metall Mater Trans A 37(10):3099–3109

    Article  Google Scholar 

  • Zhang Z, Chen D (2006) Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: a model for predicting their yield strength. Scr Mater 54:1321–1326. doi:10.1016/j.scriptamat.2005.12.017

    Article  Google Scholar 

  • Zhang X, Zhang D, We R et al (1997) (SiCw+B4Cp)/ZK60A Mg alloy matrix composite. Scr Mater 37:1631–1635

    Article  Google Scholar 

  • Zhang Q, Chen G, Wu G et al (2003) Property characteristics of a AlNp/Al composite fabricated by squeeze casting technology. Mater Lett 57:1453–1458. doi:10.1016/S0167-577X(02)01006-6

    Article  Google Scholar 

  • Zhang Q, Ma X, Wu G (2013) Interfacial microstructure of SiCp/Al composite produced by the pressureless infiltration technique. Ceram Int 39:4893–4897. doi:10.1016/j.ceramint.2012.11.082

    Article  Google Scholar 

  • Zheng M, Wu K, Yao C (2001) Characterization of interfacial reaction in squeeze cast SiCw/Mg composite. Mater Lett 47:118–124

    Article  Google Scholar 

  • Zheng MY, Wu K, Liang M et al (2004) The effect of thermal exposure on the interface and mechanical properties of Al18B4O33w/AZ91 magnesium matrix composite. Mater Sci Eng A 372:66–74. doi:10.1016/j.msea.2003.09.085

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 S. Jayalakshmi and M. Gupta

About this chapter

Cite this chapter

Jayalakshmi, S., Gupta, M. (2015). Light Metal Matrix Composites. In: Metallic Amorphous Alloy Reinforcements in Light Metal Matrices. SpringerBriefs in Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-15016-1_2

Download citation

Publish with us

Policies and ethics