Skip to main content

High-Order Flux Reconstruction Schemes for LES on Tetrahedral Meshes

  • Conference paper
  • First Online:
Progress in Hybrid RANS-LES Modelling

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 130))

Abstract

The use of the high-order Flux Reconstruction (FR) spatial discretization scheme for LES on unstructured meshes is investigated. Simulations of the compressible Taylor-Green vortex at \(Re=1{,}600\) demonstrate that the FR scheme has low numerical dissipation and accurately reproduces the turbulent energy cascade at low resolution, making it ideal for high-order LES. To permit the use of subgrid-scale models incorporating explicit filtering on tetrahedral meshes, a high-order filter acting on the modal form of the solution (i.e. the Dubiner basis functions) is developed. The WALE-Similarity mixed (WSM) model using this filter is employed for LES of the flow over a square cylinder at \(Re=21{,}400\), obtaining reasonable agreement with experiments. Future research will be directed at improved SGS models and filters and at developing high-order hybrid RANS/LES methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 1st international workshop on high-order CFD methods. At the 50th AIAA Aerospace Sciences Meeting, Nashville, Tennessee, 7–8 Jan 2012

    Google Scholar 

  2. 2nd international workshop on high-order CFD methods. At DLR, Cologne, Germany, 27–28 May 2013

    Google Scholar 

  3. Allaneau, Y., Jameson, A.: Connections between the filtered discontinous Galerkin method and the flux reconstruction approach to high order discretizations. Comput. Methods Appl. Mech. Eng. 200, 3628–3636 (2011)

    Google Scholar 

  4. Bardina, J., Ferziger, J., Reynolds, W.: Improved subgrid-scale models for large-eddy simulation. In: 13th AIAA Fluid and Plasma Dynamics Conference. Snowmass, Colorado, 4–16 July 1980

    Google Scholar 

  5. Beck, A., Gassner, G.: On the accuracy of high-order discretizations for underresolved turbulence simulations. Theoret. Comput. Fluid Dyn. 27(3–4), 221–237 (2012)

    Google Scholar 

  6. Bouffanais, R., Deville, M., Fischer, P., Leriche, E., Weill, D.: Large-eddy simulation of the lid-driven cubic cavity flow by the spectral element method. J. Sci. Comput. 27(1–3), 151–162 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Boyd, J.: The Legendre-Burgers equation: when artificial dissipation fails. Appl. Math. Comput. 217, 1949–1964 (2010)

    Google Scholar 

  8. Breuer, M., Rodi, W.: Large-eddy simulation of turbulent flow through a straight square duct and a 180 bend. Direct and Large-Eddy Simulation I, pp. 273–285. Springer, Berlin (1994)

    Chapter  Google Scholar 

  9. Castonguay, P., Liang, C., Jameson, A.: Simulation of transitional flow over airfoils using the spectral difference method. In: AIAA, pp. 2010–4626 (2010)

    Google Scholar 

  10. Castonguay, P., Williams, D., Vincent, P.E., Jameson, A.: Energy stable flux reconstruction schemes for advection-diffusion problems. Comput. Methods Appl. Mech. Eng. 267, 400–417 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  11. Chapelier, J.B., Plata, M., Renac, F.: Inviscid and viscous simulations of the Taylor-Green vortex flow using a modal Discontinuous Galerkin approach. In: AIAA paper, pp. 2012–3073 (2012)

    Google Scholar 

  12. Debonis, J.: Solutions of the Taylor-Green vortex problem using high-resolution explicit finite difference methods. In: AIAA paper, pp. 2013–0382 (2013)

    Google Scholar 

  13. Diosady, L., Murman, S.: Design of a variational multiscale method for turbulent compressible flows. In: AIAA paper, pp. 2013–2870 (2013)

    Google Scholar 

  14. Dubiner, M.: Spectral methods on triangles and other domains. J. Sci. Comput. 6(4), 345–390 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  15. Fischer, P., Mullen, J.: Filter-based stabilization of spectral element methods. C. R. Acad. Sci. I-Math. 332(3), 265–270 (2001)

    MATH  MathSciNet  Google Scholar 

  16. Gottlieb, D., Hesthaven, J.: Spectral methods for hyperbolic problems. J. Comput. Appl. Math. 128, 83–131 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hesthaven, J., Warburton, T.: Nodal discontinuous Galerkin Methods: algorithms, analysis, and applications. Springer, New York (2007)

    Google Scholar 

  18. Huynh, H.: A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods. In: AIAA paper (2007). 18th AIAA Computational Fluid Dynamics Conference, Miami, FL, 25–28 Jun 2007

    Google Scholar 

  19. Jameson, A., Vincent, P.E., Castonguay, P.: On the non-linear stability of flux reconstruction schemes. J. Sci. Comput. 50, 434 (2011)

    Article  MathSciNet  Google Scholar 

  20. Karamanos, G., Karniadakis, G.: A spectral vanishing viscosity method for large-eddy simulations. J. Comput. Phys. 163(1), 22–50 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  21. Lee, E., Gunzburger, M.: A finite element, filtered eddy-viscosity method for the Navier-Stokes equations with large Reynolds number. J. Math. Anal. Appl. 385, 384–398 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  22. Liang, C., Premasuthan, S., Jameson, A., Wang, Z.: Large eddy simulation of compressible turbulent channel flow with spectral difference method. In: AIAA paper 402 (2009). 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, p. 15. Orlando, FL, 5–8 Jan 2009

    Google Scholar 

  23. Liu, Y., Vinokur, M., Wang, Z.J.: Spectral difference method for unstructured grids I: basic formulation. J. Comput. Phys. 216, 780–801 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  24. Lodato, G., Castonguay, P., Jameson, A.: Discrete filter operators for large-eddy simulation using high-order spectral difference methods. Int. J. Numer. Meth. Fluids 72(2), 231–258 (2013)

    Article  MathSciNet  Google Scholar 

  25. Lubcke, H., Schmidt, S., Rung, T., Thiele, F.: Comparison of LES and RANS in bluff-body flows. J. Wind Eng. Ind. Aerodyn. 89, 1471–1485 (2001)

    Article  Google Scholar 

  26. Lyn, D., Einav, S., Rodi, W., Park, J.: A laser-Doppler velocimetry study of ensemble-averaged characteristics of the turbulent near wake of a square cylinder. J. Fluid Mech. 304(1), 285–319 (1995)

    Article  Google Scholar 

  27. Lyn, D., Rodi, W.: The flapping shear layer formed by flow separation from the forward corner of a square cylinder. J. Fluid Mech. 267, 353–376 (1994)

    Article  Google Scholar 

  28. Meister, A., Ortleb, S., Sonar, T.: On spectral filtering for discontinuous Galerkin methods on unstructured triangular grids. Math. Schriften Kassel (2009)

    Google Scholar 

  29. Nicoud, F., Ducros, F.: Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul. Combust. 62(3), 183–200 (1999)

    Article  MATH  Google Scholar 

  30. Parsani, M., Ghorbaniasl, G., Lacor, C., Turkel, E.: An implicit high-order spectral difference approach for large eddy simulation. J. Comput. Phys. 229, 5373–5393 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  31. Pasquetti, R.: High-order LES modeling of turbulent incompressible flow. C.R. Méc. 333(1), 39–49 (2005)

    Article  MATH  Google Scholar 

  32. Roe, P.L.: Approximate Riemann solvers, parameter vectors and difference schemes. J. Comput. Phys. 43, 357–372 (1981)

    Google Scholar 

  33. Taylor, M., Wingate, B.: The natural function space for triangular and tetrahedral spectral elements. SIAM J. Numer. Anal. (1998)

    Google Scholar 

  34. Vincent, P.E., Castonguay, P., Jameson, A.: A new class of high-order energy stable flux reconstruction schemes. J. Sci. Comput. 47(1), 50–72 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  35. Wang, B., Bergstrom, D.J.: A dynamic nonlinear subgrid-scale stress model. Phys. Fluids 17, 1 (2005)

    MATH  MathSciNet  Google Scholar 

  36. Winckelmans, G.S., Wray, A.A., Vasilyev, O.V., Jeanmart, H.: Explicit-filtering large-eddy simulation using the tensor-diffusivity model supplemented by a dynamic Smagorinsky term. Phys. Fluids 13(5), 1385–1404 (2001)

    Article  Google Scholar 

  37. Zang, Y., Street, R.L., Koseff, J.R.: A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows. Phys. Fluids A-Fluid 5(12), 3186–3196 (1993)

    Article  Google Scholar 

Download references

Acknowledgments

This research was made possible by the support of the NSF under grant number 1114816, monitored by Dr. Leland Jameson, and the Air Force Office of Scientific Research under grant number FA9550-10-1-0418, monitored by Dr. Fariba Fahroo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan R. Bull .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Bull, J.R., Jameson, A. (2015). High-Order Flux Reconstruction Schemes for LES on Tetrahedral Meshes. In: Girimaji, S., Haase, W., Peng, SH., Schwamborn, D. (eds) Progress in Hybrid RANS-LES Modelling. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 130. Springer, Cham. https://doi.org/10.1007/978-3-319-15141-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15141-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15140-3

  • Online ISBN: 978-3-319-15141-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics