Skip to main content

Optimization and Approximation Methods

  • Chapter
  • First Online:
School Buildings Rehabilitation

Abstract

This chapter describes the basic mathematical formulation of the Artificial Neural Networks and the multi-objective optimization methods. The concept of Artificial Neural Network is presented and its potential for engineering applications is highlighted. The multi-objective optimization problem is described and formulated and the evolutionary algorithms are described as very promising tools for solving this kind of problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Costa, L. (2003). Algoritmos Evolucionários em Optimização Uni e Multi-objectivo. PhD Thesis, U.M.—University of Minho, Portugal.

    Google Scholar 

  • Deb, K. (2001). Multi-objective optimization using evolutionary algorithms. Chichester, England: John Wiley & Sons Ltd.

    MATH  Google Scholar 

  • Deb, K., Agrawal, S., Pratap, A., & Meyarivan, T. (2000). A fast and elitist multiobjective genetic algorithm: NSGAII. Technical Report 200001, Indian Institute of Technology, Kanpur: Kanpur Genetic Algorithms Laboratory (KanGAL).

    Google Scholar 

  • Fonseca, C. M. & Fleming, P. J. (1993). Genetic algorithms for multiobjective optimization: Formulation, discussion, and generalization. In: Proceedings of the Fifth International Conference on Genetic Algorithms. Urbana-Champaign, USA. June 17–21, 1993.

    Google Scholar 

  • Hagan, M. T., Demuth, H. B., & Beale, M. H. (1996). Neural network design. PWS Publishing Company, Boston. (ISBN 0534943322).

    Google Scholar 

  • Horn, J., Nafploitis, N., & Goldberg, D. (1994). A niched Pareto genetic algorithm for multiobjective optimization. In: Proceedings of the First IEEE Conference on Evolutionary Computation. Orlando, USA. June 27–29, 1994.

    Google Scholar 

  • Jain, L. C., Goldberg, R., & Ajith, A. (2005). Evolutionary multiobjective optimization: theoretical advances and applications. New York: Springer.

    Google Scholar 

  • Justesen, P. D. (2010). Distinct candidates optimization: a novel approach to applied evolutionary multi-and many-objective optimization. PhD Thesis, Faculty of Science of the University of Aarhus.

    Google Scholar 

  • Kalogirou, S. (1999). Applications of artificial neural networks in energy systems: a review. Energy Conversion and Management, 40(10), 1073–1087.

    Article  Google Scholar 

  • Magnier, L., & Haghighat, F. (2010). Multiobjective optimization of buildings design using TRNSYS simulations, genetic algorithm, and artificial neural networks. Building and Environment, 45(3), 739–746.

    Article  Google Scholar 

  • Matlab (2006). Neural network toolbox 6—User’s guide. The MathWorks.

    Google Scholar 

  • McCulloch, W., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 5, 115–133.

    Article  MATH  MathSciNet  Google Scholar 

  • Patterson, D. W. (1996). Artificial neural networks: theory and applications. Prentice Hall, New Jersey. (ISBN 0132953536).

    Google Scholar 

  • Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65, 386–408.

    Article  MathSciNet  Google Scholar 

  • Schaffer, J. D. (1985). Multiple objective optimization with vector evaluated genetic algorithms. In: Proceedings of the First International Conference on Genetic Algorithms. Pittsburgh, US. July 24–26, 1985.

    Google Scholar 

  • Zitzler, E., Deb, K., & Thieler, L. (2000). Comparison of multiobjective evolutionary algorithms: empirical results. IEEE Transactions on Evolutionary Computation, 8, 173–195.

    Article  Google Scholar 

  • Zitzler, E., Laumanns, M., & Thiele, L. (2001). SPEA2: Improving the strength Pareto evolutionary algorithm. Technical Report 103, Computer Engineering and Networks Laborator (TIK), Swiss Federal Institute of Technology (ETH), Zurich, Switzerland.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo M. S. F. Almeida .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Almeida, R.M.S.F., de Freitas, V.P., Delgado, J.M.P.Q. (2015). Optimization and Approximation Methods. In: School Buildings Rehabilitation. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-15359-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15359-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15358-2

  • Online ISBN: 978-3-319-15359-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics