Skip to main content

Time-Domain Ab Initio Modeling of Charge and Exciton Dynamics in Nanomaterials

  • Chapter
Green Processes for Nanotechnology

Abstract

Nonequilibrium dynamical processes in nanoscale materials involving electrons, excitons, and vibrations are under active experimental investigation. Corresponding theoretical studies, however, are much scarcer. This chapter starts with the basics of time-dependent density functional theory, recent developments in nonadiabatic molecular dynamics methods, and the fusion of the two techniques. Ab initio simulations of this kind allow us to directly mimic a great variety of time-resolved experiments performed with pump-probe laser spectroscopies. We systematically investigate two important building blocks of modern nanotechnology, namely, quantum dots (QDs) and titanium dioxide (TiO2). The focus is on the ultrafast photoinduced charge and exciton dynamics at interfaces formed by two complementary materials, including QD-TiO2 hybrids, organic-QD and organic-TiO2 interfaces, and all organic systems. These interfaces involve bulk semiconductors, metallic and semiconducting nanoclusters, graphene, carbon nanotubes, fullerenes, polymers, molecules and molecular crystals. The detailed atomistic insights available from time-domain ab initio studies provide a unique description and a comprehensive understanding of the competition between various dynamical processes (e.g., electron transfer, thermal relaxation, energy transfer, and charge recombination). These advances now make it possible to directly guide the development of organic and hybrid solar cells, as well as photocatalytic, electronic, spintronic, and other devices relying on complex interfacial dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akimov AV, Neukirch AJ, Prezhdo OV (2013) Chem Rev 113:4496

    Google Scholar 

  2. Hagfeldt A, Grätzel M (2000) Acc Chem Res 33:269

    Google Scholar 

  3. Anderson NA, Lian T (2005) Annu Rev Phys Chem 56:491

    Google Scholar 

  4. Zhao W, Ma W, Chen C, Zhao J, Shuai Z (2004) J Am Chem Soc 126:4782

    Google Scholar 

  5. Anfuso CL, Snoeberger RC, Ricks AM, Liu W, Xiao D, Batista VS, Lian T (2011) J Am Chem Soc 133:6922

    Google Scholar 

  6. Tang J, Durrant JR, Klug DR (2008) J Am Chem Soc 130:13885

    Google Scholar 

  7. Roy P, Das C, Lee K, Hahn R, Ruff T, Moll M, Schmuki P (2011) J Am Chem Soc 133:5629

    Google Scholar 

  8. Kamat PV (1993) Chem Rev 93:267

    Google Scholar 

  9. Zhu X (1994) Annu Rev Phys Chem 45:113

    Google Scholar 

  10. Jiang D, Zhao H, Zhang S, John R (2004) J Catal 223:212

    Google Scholar 

  11. Cracknell JA, Vincent KA, Armstrong FA (2008) Chem Rev 108:2439

    Google Scholar 

  12. Nitzan A, Ratner MA (2003) Science 300:1384

    Google Scholar 

  13. Fan F-RF, Yao Y, Cai L, Cheng L, Tour JM, Bard AJ (2004) J Am Chem Soc 126:4035

    Google Scholar 

  14. Naber WJM, Faez S, Wiel WGvd (2007) J Phys D Appl Phys 40:R205

    Google Scholar 

  15. Wolf SA, Awschalom DD, Buhrman RA, Daughton JM, von Molnár S, Roukes ML, Chtchelkanova AY, Treger DM (2001) Science 294:1488

    Google Scholar 

  16. Furube A, Katoh R, Yoshihara T, Hara K, Murata S, Arakawa H, Tachiya M (2004) J Phys Chem B 108:12583

    Google Scholar 

  17. Furube A, Du L, Hara K, Katoh R, Tachiya M (2007) J Am Chem Soc 129:14852

    Google Scholar 

  18. Shen YR (1989) Nature 337:519

    Google Scholar 

  19. Tisdale WA, Williams KJ, Timp BA, Norris DJ, Aydil ES, Zhu X-Y (2010) Science 328:1543

    Google Scholar 

  20. Tisdale WA, Zhu X-Y (2011) Proc Natl Acad Sci U S A 108:965

    Google Scholar 

  21. Tully JC (1990) J Chem Phys 93:1061

    Google Scholar 

  22. Tully JC (2012) J Chem Phys 137:22A301

    Google Scholar 

  23. Duncan WR, Prezhdo OV (2007) Annu Rev Phys Chem 58:143

    Google Scholar 

  24. Prezhdo OV, Duncan WR, Prezhdo VV (2008) Acc Chem Res 41:339

    Google Scholar 

  25. Prezhdo OV, Duncan WR, Prezhdo VV (2009) Prog Surf Sci 84:30

    Google Scholar 

  26. Prezhdo OV (2009) Acc Chem Res 42:2005

    Google Scholar 

  27. Hyeon-Deuk K, Prezhdo OV (2012) J Phys Condens Matter 24:363201

    Google Scholar 

  28. Sousa C, Tosoni S, Illas F (2012) Chem Rev 113:4456

    Google Scholar 

  29. Neukirch AJ, Hyeon-Deuk K, Prezhdo OV (2014) Coord Chem Rev 263–264:161

    Google Scholar 

  30. Ehrenfest P (1927) Z Physik 45:455

    Google Scholar 

  31. Prezhdo OV, Kisil VV (1997) Phys Rev A 56:162

    MathSciNet  Google Scholar 

  32. Bornemann FA, Nettesheim P, Schütte C (1996) J Chem Phys 105:1074

    Google Scholar 

  33. Parandekar PV, Tully JC (2005) J Chem Phys 122:094102

    Google Scholar 

  34. Prezhdo O (2006) Theor Chem Acc 116:206

    Google Scholar 

  35. Wang L, Akimov AV, Chen L, Prezhdo OV (2013) J Chem Phys 139:174109

    Google Scholar 

  36. Drukker K (1999) J Comput Phys 153:225

    MATH  Google Scholar 

  37. Barbatti M (2011) WIREs Comput Mol Sci 1:620

    Google Scholar 

  38. Fabiano E, Keal TW, Thiel W (2008) Chem Phys 349:334

    Google Scholar 

  39. Evenhuis C, Martínez TJ (2011) J Chem Phys 135:224110

    Google Scholar 

  40. Granucci G, Persico M, Toniolo A (2001) J Chem Phys 114:10608

    Google Scholar 

  41. Fernandez-Alberti S, Roitberg AE, Nelson T, Tretiak S (2012) J Chem Phys 137:014512

    Google Scholar 

  42. Wang L, Prezhdo OV (2014) J Phys Chem Lett 5:713

    Google Scholar 

  43. Wang L, Beljonne D (2013) J Phys Chem Lett 4:1888

    Google Scholar 

  44. Wang L, Beljonne D (2013) J Chem Phys 139:064316

    Google Scholar 

  45. Wang L, Trivedi D, Prezhdo OV (2014) J Chem Theory Comput 10:3598

    Google Scholar 

  46. Bittner ER, Rossky PJ (1995) J Chem Phys 103:8130

    Google Scholar 

  47. Hack MD, Truhlar DG (2001) J Chem Phys 114:9305

    Google Scholar 

  48. Bedard-Hearn MJ, Larsen RE, Schwartz BJ (2005) J Chem Phys 123:234106

    Google Scholar 

  49. Prezhdo OV (1999) J Chem Phys 111:8366

    Google Scholar 

  50. Jaeger HM, Fischer S, Prezhdo OV (2012) J Chem Phys 137:22A545

    Google Scholar 

  51. Akimov AV, Long R, Prezhdo OV (2014) J Chem Phys 140:194107

    Google Scholar 

  52. Young KF, Frederikse HPR (1973) J Phys Chem Ref Data 2:313

    Google Scholar 

  53. Coropceanu V, Cornil J, da Silva Filho DA, Olivier Y, Silbey R, Brédas J-L (2007) Chem Rev 107:926

    Google Scholar 

  54. Wang L, Nan G, Yang X, Peng Q, Li Q, Shuai Z (2010) Chem Soc Rev 39:423

    Google Scholar 

  55. Shuai Z, Wang L, Li Q (2011) Adv Mater 23:1145

    Google Scholar 

  56. Troisi A (2011) Chem Soc Rev 40:2347

    Google Scholar 

  57. Knupfer M (2003) Appl Phys A 77:623

    Google Scholar 

  58. Nayak PK (2013) Synt Met 174:42

    Google Scholar 

  59. Engel M, Kunze F, Lupascu DC, Benson N, Schmechel R (2012) Phys Status Solidi RRL 6:68

    Google Scholar 

  60. Long R, Prezhdo OV (2011) J Am Chem Soc 133:19240

    Google Scholar 

  61. Long R, English NJ, Prezhdo OV(2014) J Phys Chem Lett 5:2941

    Google Scholar 

  62. Tafen DN, Long R, Prezhdo OV (2014) Nano Lett 14:1790

    Google Scholar 

  63. Long R, English NJ, Prezhdo OV (2012) J Am Chem Soc 134:14238

    Google Scholar 

  64. Long R, English NJ, Prezhdo OV (2013) J Am Chem Soc 135:18892

    Google Scholar 

  65. Chaban VV, Prezhdo VV, Prezhdo OV (2013) J Phys Chem Lett 4:1

    Google Scholar 

  66. Zhu H, Yang Y, Hyeon-Deuk K, Califano M, Song N, Wang Y, Zhang W, Prezhdo OV, Lian T (2013) Nano Lett 14:1263

    Google Scholar 

  67. Long R, Prezhdo OV (2014) (in preparation)

    Google Scholar 

  68. Akimov AV, Prezhdo OV (2014) J Am Chem Soc 136:1599

    Google Scholar 

  69. Long R, Prezhdo OV (2014) Nano Lett 14:3335

    Google Scholar 

  70. Feynman RP (1948) Rev Mod Phys 20:367

    MathSciNet  Google Scholar 

  71. Hohenberg P, Kohn W (1964) Phys Rev 136:B864

    MathSciNet  Google Scholar 

  72. Kohn W, Sham LJ (1965) Phys Rev 140:A1133

    MathSciNet  Google Scholar 

  73. Ziegler T (1991) Chem Rev 91:651

    Google Scholar 

  74. Runge E, Gross EKU (1984) Phys Rev Lett 52:997

    Google Scholar 

  75. Marques MAL, Gross EKU (2004) Annu Rev Phys Chem 55:427

    Google Scholar 

  76. Baer R, Neuhauser D (2004) J Chem Phys 121:9803

    Google Scholar 

  77. Tretiak S, Igumenshchev K, Chernyak V (2005) Phys Rev B 71:033201

    Google Scholar 

  78. Fischer SA, Habenicht BF, Madrid AB, Duncan WR, Prezhdo OV (2011) J Chem Phys 134:024102

    Google Scholar 

  79. Chernyak V, Mukamel S (2000) J Chem Phys 112:3572

    Google Scholar 

  80. Baer R (2002) Chem Phys Lett 364:75

    MathSciNet  Google Scholar 

  81. Hu C, Hirai H, Sugino O (2007) J Chem Phys 127:064103

    Google Scholar 

  82. Tavernelli I, Tapavicza E, Rothlisberger U (2009) J Chem Phys 130:124107

    Google Scholar 

  83. Send R, Furche F (2010) J Chem Phys 132:044107

    Google Scholar 

  84. Hammes‐Schiffer S, Tully JC (1994) J Chem Phys 101:4657

    Google Scholar 

  85. Craig CF, Duncan WR, Prezhdo OV (2005) Phys Rev Lett 95:163001

    Google Scholar 

  86. Petersilka M, Gossmann UJ, Gross EKU (1996) Phys Rev Lett 76:1212

    Google Scholar 

  87. Appel H, Gross EKU, Burke K (2003) Phys Rev Lett 90:043005

    Google Scholar 

  88. Prezhdo OV, Rossky PJ (1997) J Chem Phys 107:825

    Google Scholar 

  89. Neria E, Nitzan A (1993) J Chem Phys 99:1109

    Google Scholar 

  90. Akimov AV, Prezhdo OV (2013) J Chem Theory Comput 9:4959

    Google Scholar 

  91. Wang L, Beljonne D, Chen L, Shi Q (2011) J Chem Phys 134:244116

    Google Scholar 

  92. Neuhauser D, Lopata K (2008) J Chem Phys 129:134106

    Google Scholar 

  93. Meng S, Kaxiras E (2008) J Chem Phys 129:054110

    Google Scholar 

  94. Prezhdo OV, Pereverzev YV (2000) J Chem Phys 113:6557

    Google Scholar 

  95. Kilin DS, Pereversev YV, Prezhdo OV (2004) J Chem Phys 120:11209

    Google Scholar 

  96. Akimov AV, Prezhdo OV (2012) J Chem Phys 137:224115

    Google Scholar 

  97. Wang LJ, Peng Q, Li QK, Shuai Z (2007) J Chem Phys 127:044506

    Google Scholar 

  98. Wang LJ, Li QK, Shuai Z (2008) J Chem Phys 128:194706

    Google Scholar 

  99. Wang L, Li Q, Shuai Z, Chen L, Shi Q (2010) Phys Chem Chem Phys 12:3309

    Google Scholar 

  100. Cheng Y-C, Silbey RJ (2008) J Chem Phys 128:114713

    Google Scholar 

  101. Hannewald K, Bobbert PA (2004) Phys Rev B 69:075212

    Google Scholar 

  102. Fratini S, Ciuchi S (2003) Phys Rev Lett 91:256403

    Google Scholar 

  103. Berkelbach TC, Hybertsen MS, Reichman DR (2013) J Chem Phys 138:114102

    Google Scholar 

  104. Seidel W, Titkov A, André JP, Voisin P, Voos M (1994) Phys Rev Lett 73:2356

    Google Scholar 

  105. Hartmann T, Reineker P, Yudson VI (2011) Phys Rev B 84:245317

    Google Scholar 

  106. Sippel P, Albrecht W, Mitoraj D, Eichberger R, Hannappel T, Vanmaekelbergh D (2013) Nano Lett 13:1655

    Google Scholar 

  107. Lindblad G (1976) Commun Math Phys 48:119

    MATH  MathSciNet  Google Scholar 

  108. Zurek WH (2003) Rev Mod Phys 75:715

    MATH  MathSciNet  Google Scholar 

  109. Leggett AJ, Chakravarty S, Dorsey AT, Fisher MPA, Garg A, Zwerger W (1987) Rev Mod Phys 59:1

    Google Scholar 

  110. Plenio MB, Knight PL (1998) Rev Mod Phys 70:101

    Google Scholar 

  111. Strunz WT (2001) Chem Phys 268:237

    Google Scholar 

  112. Diósi L, Strunz WT (1997) Phys Lett A 235:569

    MATH  MathSciNet  Google Scholar 

  113. Akimov AV, Prezhdo OV (2014) J Chem Theory Comput 10:789

    Google Scholar 

  114. Trotter HF (1959) Proc Amer Math Soc 10:545

    MATH  MathSciNet  Google Scholar 

  115. Paolo G et al (2009) J Phys Condens Matter 21:395502

    Google Scholar 

  116. Zhu H, Yang Y, Lian T (2012) Acc Chem Res 46:1270

    Google Scholar 

  117. Beard MC, Luther JM, Semonin OE, Nozik AJ (2012) Acc Chem Res 46:1252

    Google Scholar 

  118. Nozik AJ (2001) Annu Rev Phys Chem 52:193

    Google Scholar 

  119. Pandey A, Guyot-Sionnest P (2008) Science 322:929

    Google Scholar 

  120. Schaller RD, Klimov VI (2004) Phys Rev Lett 92:186601

    Google Scholar 

  121. Ellingson RJ, Beard MC, Johnson JC, Yu P, Micic OI, Nozik AJ, Shabaev A, Efros AL (2005) Nano Lett 5:865

    Google Scholar 

  122. McGuire JA, Joo J, Pietryga JM, Schaller RD, Klimov VI (2008) Acc Chem Res 41:1810

    Google Scholar 

  123. Shabaev A, Efros AL, Nozik AJ (2006) Nano Lett 6:2856

    Google Scholar 

  124. Murphy JE, Beard MC, Norman AG, Ahrenkiel SP, Johnson JC, Yu P, Mićić OI, Ellingson RJ, Nozik AJ (2006) J Am Chem Soc 128:3241

    Google Scholar 

  125. Madrid AB, Hyeon-Deuk K, Habenicht BF, Prezhdo OV (2009) ACS Nano 3:2487

    Google Scholar 

  126. Prezhdo OV (2008) Chem Phys Lett 460:1

    Google Scholar 

  127. Kilina SV, Kilin DS, Prezhdo OV (2008) ACS Nano 3:93

    Google Scholar 

  128. Wang L-W, Califano M, Zunger A, Franceschetti A (2003) Phys Rev Lett 91:056404

    Google Scholar 

  129. Franceschetti A, An JM, Zunger A (2006) Nano Lett 6:2191

    Google Scholar 

  130. Peterson JJ, Krauss TD (2006) Nano Lett 6:510

    Google Scholar 

  131. Kilina SV, Craig CF, Kilin DS, Prezhdo OV (2007) J Phys Chem C 111:4871

    Google Scholar 

  132. Schaller RD, Pietryga JM, Goupalov SV, Petruska MA, Ivanov SA, Klimov VI (2005) Phys Rev Lett 95:196401

    Google Scholar 

  133. Cooney RR, Sewall SL, Anderson KEH, Dias EA, Kambhampati P (2007) Phys Rev Lett 98:177403

    Google Scholar 

  134. Habenicht BF, Prezhdo OV (2008) Phys Rev Lett 100:197402

    Google Scholar 

  135. Prezhdo OV, Rossky PJ (1998) Phys Rev Lett 81:5294

    Google Scholar 

  136. Skinner JL (1988) Annu Rev Phys Chem 39:463

    Google Scholar 

  137. Mukamel S (1995) Principles of Nonlinear Optical Spectroscopy, Oxford University Press

    Google Scholar 

  138. Salvador MR, Hines MA, Scholes GD (2003) J Chem Phys 118:9380

    Google Scholar 

  139. Isborn CM, Kilina SV, Li X, Prezhdo OV (2008) J Phys Chem C 112:18291

    Google Scholar 

  140. Hyeon-Deuk K, Prezhdo OV (2012) ACS Nano 6:1239

    Google Scholar 

  141. Luo J-W, Franceschetti A, Zunger A (2008) Nano Lett 8:3174

    Google Scholar 

  142. Rabani E, Baer R (2008) Nano Lett 8:4488

    Google Scholar 

  143. Linsebigler AL, Lu G, Yates JT (1995) Chem Rev 95:735

    Google Scholar 

  144. Thompson TL, Yates JT (2006) Chem Rev 106:4428

    Google Scholar 

  145. Moser J, Graetzel M (1983) J Am Chem Soc 105:6547

    Google Scholar 

  146. O’Regan B, Gratzel M (1991) Nature 353:737

    Google Scholar 

  147. Bonnell DA (1998) Prog Surf Sci 57:187

    Google Scholar 

  148. Henrich VE (1995) Prog Surf Sci 50:77

    Google Scholar 

  149. Diebold U (2003) Surf Sci Rep 48:53

    Google Scholar 

  150. Stier W, Prezhdo OV (2002) Israel J Chem 42:213

    Google Scholar 

  151. Duncan WR, Prezhdo OV (2008) J Am Chem Soc 130:9756

    Google Scholar 

  152. Asbury JB, Anderson NA, Hao E, Ai X, Lian T (2003) J Phys Chem B 107:7376

    Google Scholar 

  153. McCusker JK (2003) Acc Chem Res 36:876

    Google Scholar 

  154. Henry W et al (2008) J Phys Chem A 112:4537

    Google Scholar 

  155. Duncan WR, Craig CF, Prezhdo OV (2007) J Am Chem Soc 129:8528

    Google Scholar 

  156. Stier W, Duncan WR, Prezhdo OV (2004) Adv Mater 16:240

    Google Scholar 

  157. Duncan WR, Stier WM, Prezhdo OV (2005) J Am Chem Soc 127:7941

    Google Scholar 

  158. Stier W, Prezhdo OV (2002) J Phys Chem B 106:8047

    Google Scholar 

  159. Warren DS, McQuillan AJ (2004) J Phys Chem B 108:19373

    Google Scholar 

  160. Panayotov DA, Yates JT Jr (2007) Chem Phys Lett 436:204

    Google Scholar 

  161. Ramakrishna S, Willig F, Knorr A (2004) Surf Sci 558:159

    Google Scholar 

  162. Prakash T (2012) Electron Mater Lett 8:231

    Google Scholar 

  163. Kohler A, dos Santos DA, Beljonne D, Shuai Z, Bredas JL, Holmes AB, Kraus A, Mullen K, Friend RH (1998) Nature 392:903

    Google Scholar 

  164. Salant A, Shalom M, Tachan Z, Buhbut S, Zaban A, Banin U (2012) Nano Lett 12:2095

    Google Scholar 

  165. Moon GD, Ko S, Xia Y, Jeong U (2010) ACS Nano 4:2307

    Google Scholar 

  166. Kim JY, Noh JH, Zhu K, Halverson AF, Neale NR, Park S, Hong KS, Frank AJ (2011) ACS Nano 5:2647

    Google Scholar 

  167. Morozov SV, Novoselov KS, Katsnelson MI, Schedin F, Elias DC, Jaszczak JA, Geim AK (2008) Phys Rev Lett 100:016602

    Google Scholar 

  168. Chen L, Wang L, Shuai Z, Beljonne D (2013) J Phys Chem Lett 4:2158

    Google Scholar 

  169. Williams G, Seger B, Kamat PV (2008) ACS Nano 2:1487

    Google Scholar 

  170. Zhang H, Lv X, Li Y, Wang Y, Li J (2009) ACS Nano 4:380

    Google Scholar 

  171. Manga KK, Zhou Y, Yan Y, Loh KP (2009) Adv Funct Mater 19:3638

    Google Scholar 

  172. Wei HH-Y, Evans CM, Swartz BD, Neukirch AJ, Young J, Prezhdo OV, Krauss TD (2012) Nano Lett 12:4465

    Google Scholar 

  173. Inerbaev TM, Masunov AE, Khondaker SI, Dobrinescu A, Plamadă A-V, Kawazoe Y (2009) J Chem Phys 131:044106

    Google Scholar 

  174. Yang Y, Rodríguez-Córdoba W, Lian T (2011) J Am Chem Soc 133:9246

    Google Scholar 

  175. Bang JH, Kamat PV (2011) ACS Nano 5:9421

    Google Scholar 

  176. Marcus RA (1956) J Chem Phys 24:966

    Google Scholar 

  177. Marcus RA (1965) J Chem Phys 43:679

    Google Scholar 

  178. Brus LE (1983) J Chem Phys 79:5566. http://dx.doi.org/10.1063/1.445676

  179. Caruso D, Troisi A (2012) PNAS

    Google Scholar 

  180. Cappel UB, Dowland SA, Reynolds LX, Dimitrov S, Haque SA (2013) J Phys Chem Lett 4:4253

    Google Scholar 

  181. Smith MB, Michl J (2010) Chem Rev 110:6891

    Google Scholar 

  182. Smith MB, Michl J (2013) Annu Rev Phys Chem 64:361

    Google Scholar 

  183. Beljonne D, Yamagata H, Brédas JL, Spano FC, Olivier Y (2013) Phys Rev Lett 110:226402

    Google Scholar 

  184. Rao A, Wilson MWB, Hodgkiss JM, Albert-Seifried S, Bässler H, Friend RH (2010) J Am Chem Soc 132:12698

    Google Scholar 

  185. Anthony JE (2010) Chem Mater 23:583

    Google Scholar 

  186. Stranks SD, Weisspfennig C, Parkinson P, Johnston MB, Herz LM, Nicholas RJ (2010) Nano Lett 11:66

    Google Scholar 

  187. Porezag D, Frauenheim T, Köhler T, Seifert G, Kaschner R (1995) Phys Rev B 51:12947

    Google Scholar 

  188. Koskinen P, Mäkinen V (2009) Comput Mater Sci 47:237

    Google Scholar 

Download references

Acknowledgments

The authors are indebted to many experimentalist and theoretician colleagues for fruitful and illuminating discussions. Many thanks go to the past and current group members, including Alexey Akimov, Amanda Neukirch, Vitaly Chaban, Heather Jaeger, and Hyeon-Deuk Kim. R. L. is grateful to the SIRG Program 11/SIRG/E2172 of the Science Foundation Ireland. The research was supported by the U.S. National Science Foundation, Grant No. CHE-1300118 and the U. S. Department of Energy, Grant No. DE-SC0006527.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linjun Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wang, L., Long, R., Trivedi, D., Prezhdo, O.V. (2015). Time-Domain Ab Initio Modeling of Charge and Exciton Dynamics in Nanomaterials. In: Basiuk, V., Basiuk, E. (eds) Green Processes for Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-15461-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15461-9_13

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15460-2

  • Online ISBN: 978-3-319-15461-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics