Skip to main content

The Hydraulic Architecture of Conifers

  • Chapter
Functional and Ecological Xylem Anatomy

Abstract

The water-conducting cells in the xylem of conifers are tracheids. Despite the fact that these conduits are limited in diameter and length, the tracheid-based xylem structure of conifers supports the largest and tallest trees. This is explicable in the light of highly conductive pits and the fact that a large fraction of conifer wood is occupied by conduits owing to the double role of tracheids in transport and mechanical support. In habitats where conduit diameter is constrained by freezing and/or drought stress, tracheid- and vessel-based xylem may exhibit similar xylem area-specific conductivities, and this may help conifers compete with angiosperms. Timberline conifers are exposed to many freeze–thaw cycles during winter; these frost cycles in combination with low water potentials reduce hydraulic conductivity. Conifer stems can often recover hydraulic conductivity in late winter and early spring, even when soils remain frozen. Water for recovery may be taken up via the needles. Conifer needles are marvels in terms of tissue complexity and longevity, and recent studies have explored needle hydraulics and aquaporin function. Picea and Pinus species exhibited considerable potential for acclimating to different environments. However, recent reports of piñon mortality indicate that there are genetically determined limits to drought tolerance. While water loss can be regulated in the short term, the potential of xylem to become more resistant to drought-induced cavitation during development appears to be rather limited. Progress has been made in linking differences in cavitation resistance with pit properties, and future work will likely lead to a better understanding of the cavitation mechanism(s) in conifer xylem. As we learn more about conifer xylem, we come to appreciate both its simplicity and its elegance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderegg WRL, Plavcová L, Anderegg LDL, Hacke UG, Berry JA, Field CB (2013) Drought’s legacy: multi-year hydraulic deterioration underlies widespread aspen forest die-off and portends increased future risk. Glob Chang Biol 19:1188–1196

    PubMed  Google Scholar 

  • Aumann CA, Ford ED (2002) Parameterizing a model of Douglas fir water flow using a tracheid-level model. J Theor Biol 219:431–462

    PubMed  Google Scholar 

  • Bailey IW (1913) The preservative treatment of wood–II. The structure of the pit membranes in the tracheids of conifers and their relation to the penetration of gases, liquids, and finely divided solids into green and seasoned wood. J For 11:12–20

    Google Scholar 

  • Bannan MW (1965) The length, tangential diameter and length/width ratio of conifer tracheids. Can J Bot 43:967–984

    Google Scholar 

  • Barnard DM, Lachenbruch B, McCulloh KA, Kitin P, Meinzer FC (2013) Do ray cells provide a pathway for radial water movement in the stems of conifer trees? Am J Bot 100:322–331

    PubMed  Google Scholar 

  • Beikircher B, Mayr S (2008) The hydraulic architecture of Juniperus communis L. ssp. communis: shrubs and trees compared. Plant Cell Environ 31:1545–1556

    PubMed  Google Scholar 

  • Bond W (1989) The tortoise and the hare: ecology of angiosperm dominance and gymnosperm persistence. Biol J Linn Soc 36:227–249

    Google Scholar 

  • Bouche PS, Larter M, Domec J-C, Burlett R, Gasson P, Jansen S, Delzon S (2014) A broad survey of hydraulic and mechanical safety in the xylem of conifers. J Exp Bot 65(15):4419–4431

    PubMed Central  PubMed  Google Scholar 

  • Breshears DD, Cobb NS, Rich PM, Price KP, Allen CD, Balice RG, Romme WH, Kastens JH, Floyd ML, Belnap J, Anderson JJ, Myers OB, Meyer CW (2005) Regional vegetation die-off in response to global-change-type drought. Proc Natl Acad Sci U S A 102:15144–15148

    PubMed Central  CAS  PubMed  Google Scholar 

  • Breshears DD, McDowell NG, Goddard KL, Dayem KE, Martens SN, Meyer CW, Brown KM (2008a) Foliar absorption of intercepted rainfall improves woody plant water status most during drought. Ecology 89:41–47

    PubMed  Google Scholar 

  • Breshears DD, Myers OB, Meyer CW, Barnes FJ, Zou CB, Allen CD, McDowell NG, Pockman WT (2008b) Tree die-off in response to global change-type drought: mortality insights from a decade of plant water potential measurements. Front Ecol Environ 7:185–189

    Google Scholar 

  • Brodribb TJ, Cochard H (2009) Hydraulic failure defines the recovery and point of death in water-stressed conifers. Plant Physiol 149:575–584

    PubMed Central  CAS  PubMed  Google Scholar 

  • Brodribb T, Hill RS (1999) The importance of xylem constraints in the distribution of conifer species. New Phytol 130:365–372

    Google Scholar 

  • Brodribb TJ, Holbrook NM (2005) Water stress deforms tracheids peripheral to the leaf vein of a tropical conifer. Plant Physiol 137:1139–1146

    PubMed Central  CAS  PubMed  Google Scholar 

  • Brodribb TJ, Pittermann J, Coomes DA (2012) Elegance versus speed: examining the competition between conifer and angiosperm trees. Int J Plant Sci 173:673–694

    Google Scholar 

  • Burgess SSO, Dawson TE (2004) The contribution of fog to the water relations of Sequoia sempervirens (D. Don): foliar uptake and prevention of dehydration. Plant Cell Environ 27:1023–1034

    Google Scholar 

  • Burgess SSO, Pittermann J, Dawson TE (2006) Hydraulic efficiency and safety of branch xylem increases with height in Sequoia sempervirens (D. Don) crowns. Plant Cell Environ 29:229–239

    PubMed  Google Scholar 

  • Carlquist S (2012) Monocot xylem revisited: new information, new paradigms. Bot Rev 78:87–153

    Google Scholar 

  • Charrier G, Charra-Vaskou K, Kasuga J, Cochard H, Mayr S, Améglio T (2014) Freeze-thaw stress: effects of temperature on hydraulic conductivity and ultrasonic activity in ten woody angiosperms. Plant Physiol 164:992–998

    PubMed Central  CAS  PubMed  Google Scholar 

  • Choat B, Pittermann J (2009) New insights into bordered pit structure and cavitation resistance in angiosperms and conifers. New Phytol 182:557–560

    PubMed  Google Scholar 

  • Choat B, Cobb AR, Jansen S (2008) Structure and function of bordered pits: new discoveries and impacts on whole-plant hydraulic function. New Phytol 177:608–625

    PubMed  Google Scholar 

  • Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, Bhaskar R, Bucci SJ, Feild TS, Gleason SM, Hacke UG, Jacobsen AL, Lens F, Maherali H, Martinez-Vilalta J, Mayr S, Mencuccini M, Mitchell PJ, Nardini A, Pittermann J, Pratt RB, Sperry JS, Westoby M, Wright IJ, Zanne AE (2012) Global convergence in the vulnerability of forests to drought. Nature 491:752–755

    CAS  PubMed  Google Scholar 

  • Cochard H, Froux F, Mayr S, Coutand C (2004) Xylem wall collapse in water-stressed pine needles. Plant Physiol 134:401–408

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cochard H, Hölttä T, Herbette S, Delzon S, Mencuccini M (2009) New insights into the mechanisms of water-stress-induced cavitation in conifers. Plant Physiol 151:949–954

    PubMed Central  CAS  PubMed  Google Scholar 

  • Comstock JP, Sperry JS (2000) Tansley review no. 119. Some theoretical considerations of optimal conduit length for water transport in plants. New Phytol 148:195–218

    Google Scholar 

  • Corcuera L, Cochard H, Gil-Pelegrin E, Notivol E (2011) Phenotypic plasticity in mesic populations of Pinus pinaster improves resistance to xylem embolism (P50) under severe drought. Trees 25:1033–1042

    Google Scholar 

  • Dalla-Salda G, Martinez-Meier A, Cochard H, Rozenberg P (2009) Variation of wood density and hydraulic properties of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) clones related to a heat and drought wave in France. Forest Ecol Manag 257:182–189

    Google Scholar 

  • Davis SD, Sperry JS, Hacke UG (1999) The relationship between xylem conduit diameter and cavitation caused by freeze-thaw events. Am J Bot 86:1367–1372

    CAS  PubMed  Google Scholar 

  • Dellus V, Mila I, Scalbert A, Menard C, Michon V, Herve du Penhoat CLM (1997) Douglas-fir polyphenols and heartwood formation. Phytochemistry 45:1573–1578

    CAS  Google Scholar 

  • Delzon S, Douthe C, Sala A, Cochard H (2010) Mechanism of water‐stress induced cavitation in conifers: bordered pit structure and function support the hypothesis of seal capillary‐seeding. Plant Cell Environ 33:2101–2111

    PubMed Central  PubMed  Google Scholar 

  • Domec J-C (2011) Let’s not forget the critical role of surface tension in xylem water relations. Tree Physiol 31:359–360

    PubMed  Google Scholar 

  • Domec J, Gartner B (2002a) Age-and position-related changes in hydraulic versus mechanical dysfunction of xylem: inferring the design criteria for Douglas-fir wood structure. Tree Physiol 22:91–104

    CAS  PubMed  Google Scholar 

  • Domec JC, Gartner BL (2002b) How do water transport and water storage differ in coniferous earlywood and latewood? J Exp Bot 53:2369–2379

    CAS  PubMed  Google Scholar 

  • Domec JC, Warren JM, Meinzer FC, Brooks JR, Coulombe R (2004) Native root xylem embolism and stomatal closure in stands of Douglas-fir and ponderosa pine: mitigation by hydraulic redistribution. Oecologia 141:7–16

    PubMed  Google Scholar 

  • Domec JC, Lachenbruch B, Meinzer FC (2006) Bordered pit structure and function determine spatial patterns of air-seeding thresholds in xylem of Douglas-fir (Pseudotsuga menziesii; Pinaceae) trees. Am J Bot 93:1588–1600

    PubMed  Google Scholar 

  • Domec JC, Lachenbruch B, Meinzer FC, Woodruff DR, Warren JM, McCulloh KA (2008) Maximum height in a conifer is associated with conflicting requirements for xylem design. Proc Natl Acad Sci U S A 105:12069–12074

    PubMed Central  CAS  PubMed  Google Scholar 

  • Domec JC, Warren JM, Meinzer FC, Lachenbruch B (2009) Safety factors for xylem failure by implosion and air-seeding within roots, trunks and branches of young and old conifer trees. IAWA J 30:101–120

    Google Scholar 

  • Domec J-C, Lachenbruch B, Pruyn ML, Spicer R (2012) Effects of age-related increases in sapwood area, leaf area, and xylem conductivity on height-related hydraulic costs in two contrasting coniferous species. Ann For Sci 69:17–27

    Google Scholar 

  • Dunham S, Lachenbruch B, Ganio L (2007) Bayesian analysis of Douglas-fir hydraulic architecture at multiple scales. Trees 21:65–78

    Google Scholar 

  • Evert RF (2006) Esau’s plant anatomy: meristems, cells, and tissues of the plant body: their structure, function, and development, 3rd edn. Wiley-Interscience, Hoboken

    Google Scholar 

  • Ewers FW (1982) Secondary growth in needle leaves of Pinus longaeva (bristlecone pine) and other conifers: quantitative data. Am J Bot 69:1552–1559

    Google Scholar 

  • Ewers FW (1985) Xylem structure and water conduction in conifer trees, dicot trees, and lianas. IAWA Bull 6:309–317

    Google Scholar 

  • Ewers BE, Oren R, Sperry JS (2000) Influence of nutrient versus water supply on hydraulic architecture and water balance in Pinus taeda. Plant Cell Environ 23:1055–1066

    Google Scholar 

  • Feild TS, Brodribb T (2001) Stem water transport and freeze-thaw xylem embolism in conifers and angiosperms in a Tasmanian treeline heath. Oecologia 127:314–320

    Google Scholar 

  • Feild TS, Brodribb T, Holbrook NM (2002) Hardly a relict: freezing and the evolution of vesselless wood in Winteraceae. Evolution 56:464–478

    PubMed  Google Scholar 

  • Flanary B, Kletetschka G (2005) Analysis of telomere length and telomerase activity in tree species of various life-spans, and with age in the bristlecone pine Pinus longaeva. Biogerontology 6:101–111

    CAS  PubMed  Google Scholar 

  • Hacke UG, Jansen S (2009) Embolism resistance of three boreal conifer species varies with pit structure. New Phytol 182:675–686

    PubMed  Google Scholar 

  • Hacke UG, Sperry JS, Ewers BE, Ellsworth DS, Schäfer KVR, Oren R (2000) Influence of soil porosity on water use in Pinus taeda. Oecologia 124:495–505

    Google Scholar 

  • Hacke UG, Stiller V, Sperry JS, Pittermann J, McCulloh KA (2001a) Cavitation fatigue. Embolism and refilling cycles can weaken the cavitation resistance of xylem. Plant Physiol 125:779–786

    Google Scholar 

  • Hacke UG, Sperry JS, Pockman WT, Davis SD, McCulloh KA (2001b) Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126:457–461

    Google Scholar 

  • Hacke UG, Sperry JS, Pittermann J (2004) Analysis of circular bordered pit function—II. Gymnosperm tracheids with torus-margo pit membranes. Am J Bot 91:386–400

    PubMed  Google Scholar 

  • Hacke UG et al (2006) Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiol 26:689–701

    Google Scholar 

  • Hammel H (1967) Freezing of xylem sap without cavitation. Plant Physiol 42:55–66

    PubMed Central  CAS  PubMed  Google Scholar 

  • Holbrook NM, Zwieniecki MA (1999) Embolism repair and xylem tension: do we need a miracle? Plant Physiol 120:7–10

    PubMed Central  CAS  PubMed  Google Scholar 

  • Huber B (1947) Zur Mikrotopographie der Saftströme im Transfusionsgewebe der Koniferennadel. Planta 35:331–351

    Google Scholar 

  • Jansen S, Lamy JB, Burlett R, Cochard H, Gasson P, Delzon S (2012) Plasmodesmatal pores in the torus of bordered pit membranes affect cavitation resistance of conifer xylem. Plant Cell Environ 35:1109–1120

    CAS  PubMed  Google Scholar 

  • Johnson DM, Meinzer FC, Woodruff DR, McCulloh KA (2009) Leaf xylem embolism, detected acoustically and by cryo‐SEM, corresponds to decreases in leaf hydraulic conductance in four evergreen species. Plant Cell Environ 32:828–836

    PubMed  Google Scholar 

  • Johnson D, McCulloh K, Meinzer F, Woodruff D, Eissenstat D (2011) Hydraulic patterns and safety margins, from stem to stomata, in three eastern US tree species. Tree Physiol 31:659–668

    CAS  PubMed  Google Scholar 

  • Johnson DM, McCulloh KA, Woodruff DR, Meinzer FC (2012) Evidence for xylem embolism as a primary factor in dehydration‐induced declines in leaf hydraulic conductance. Plant Cell Environ 35:760–769

    CAS  PubMed  Google Scholar 

  • Kitin P, Fujii T, Abe H, Takata K (2009) Anatomical features that facilitate radial flow across growth rings and from xylem to cambium in Cryptomeria japonica. Ann Bot 103:1145–1157

    PubMed Central  PubMed  Google Scholar 

  • Koch GW, Sillett SC, Jennings GM, Davis SD (2004) The limits to tree height. Nature 428:851–854

    CAS  PubMed  Google Scholar 

  • Lachenbruch B, McCulloh KA (2014) Traits, properties, and performance: how woody plants combine hydraulic and mechanical functions in a cell, tissue, or whole plant. New Phytol 204:747–764

    PubMed  Google Scholar 

  • Lachenbruch B, Moore JR, Evans R (2011) Radial variation in wood structure and function in woody plants, and hypotheses for its occurrence. In: Meinzer FC, Lachenbruch B, Dawson TE (eds) Size- and age-related changes in tree structure and function, vol 4. Springer, Dordrecht, pp 121–164. doi:10.1007/978-94-007-1242-3_5

    Google Scholar 

  • Lancashire JR, Ennos AR (2002) Modelling the hydrodynamic resistance of bordered pits. J Exp Bot 53:1485–1493

    CAS  PubMed  Google Scholar 

  • LaPasha C, Wheeler E (1990) Resin canals in Pinus taeda. Longitudinal canal lengths and interconnections between longitudinal and radial canals. IAWA Bull 11:227–238

    Google Scholar 

  • Laur J, Hacke UG (2014) Exploring Picea glauca aquaporins in the context of needle water uptake and xylem refilling. New Phytol 203(2):388–400

    CAS  PubMed  Google Scholar 

  • Lieffers VJ, Rothwell RL (1987) Rooting of peatland black spruce and tamarack in relation to depth of water-table. Can J Bot 65:817–821

    Google Scholar 

  • Liepe KJ (2014) Genetic variation in lodgepole pine and interior spruce: adaptation to climate and implications for seed transfer. University of Alberta, Edmonton

    Google Scholar 

  • Linton MJ, Sperry JS, Williams DG (1998) Limits to water transport in Juniperus osteosperma and Pinus edulis: implications for drought tolerance and regulation of transpiration. Funct Ecol 12:906–911

    Google Scholar 

  • López R, de Heredia UL, Collada C, Cano FJ, Emerson BC, Cochard H, Gil L (2013) Vulnerability to cavitation, hydraulic efficiency, growth and survival in an insular pine (Pinus canariensis). Ann Bot 111:1167–1179

    PubMed Central  PubMed  Google Scholar 

  • Martínez‐Vilalta J, Cochard H, Mencuccini M, Sterck F, Herrero A, Korhonen J, Llorens P, Nikinmaa E, Nolè A, Poyatos R (2009) Hydraulic adjustment of Scots pine across Europe. New Phytol 184:353–364

    PubMed  Google Scholar 

  • Maton C, Gartner BL (2005) Do gymnosperm needles pull water through the xylem produced in the same year as the needle? Am J Bot 92:123–131

    PubMed  Google Scholar 

  • Mayr S, Charra‐Vaskou K (2007) Winter at the alpine timberline causes complex within-tree patterns of water potential and embolism in Picea abies. Physiol Plant 131:131–139

    CAS  PubMed  Google Scholar 

  • Mayr S, Cochard H (2003) A new method for vulnerability analysis of small xylem areas reveals that compression wood of Norway spruce has lower hydraulic safety than opposite wood. Plant Cell Environ 26:1365–1371

    Google Scholar 

  • Mayr S, Sperry JS (2010) Freeze–thaw-induced embolism in Pinus contorta: centrifuge experiments validate the “thaw-expansion hypothesis” but conflict with ultrasonic emission data. New Phytol 185:1016–1024

    PubMed  Google Scholar 

  • Mayr S, Wolfschwenger M, Bauer H (2002) Winter-drought induced embolism in Norway spruce (Picea abies) at the Alpine timberline. Physiol Plant 115:74–80

    Google Scholar 

  • Mayr S, Gruber A, Bauer H (2003a) Repeated freeze-thaw cycles induce embolism in drought stressed conifers (Norway spruce, stone pine). Planta 217:436–441

    CAS  PubMed  Google Scholar 

  • Mayr S, Rothart B, Dämon B (2003b) Hydraulic efficiency and safety of leader shoots and twigs in Norway spruce growing at the alpine timberline. J Exp Bot 54:2563–2568

    CAS  PubMed  Google Scholar 

  • Mayr S, Hacke U, Schmid P, Schwienbacher F, Gruber A (2006) Frost drought in conifers at the alpine timberline: xylem dysfunction and adaptations. Ecology 87:3175–3185

    PubMed  Google Scholar 

  • Mayr S, Cochard H, Améglio T, Kikuta SB (2007) Embolism formation during freezing in the wood of Picea abies. Plant Physiol 143:60–67

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mayr S, Schmid P, Beikircher B (2012) Plant water relations in alpine winter. In: Lütz C (ed) Plants in Alpine regions. Springer, Vienna, pp 153–162

    Google Scholar 

  • Mayr S, Schmid P, Laur J, Rosner S, Charra-Vaskou K, Daemon B, Hacke UG (2014) Uptake of water via branches helps timberline conifers refill embolized xylem in late winter. Plant Physiol 164:1731–1740

    PubMed Central  CAS  PubMed  Google Scholar 

  • McCulloh KA, Sperry JS (2005) Patterns in hydraulic architecture and their implications for transport efficiency. Tree Physiol 25:257–267

    PubMed  Google Scholar 

  • McCulloh K et al (2010) Moving water well: comparing hydraulic efficiency in twigs and trunks of coniferous, ring-porous, and diffuse-porous saplings from temperate and tropical forests. New Phytol 186:439–450

    Google Scholar 

  • McCulloh KA, Johnson DM, Meinzer FC, Woodruff DR (2014) The dynamic pipeline: hydraulic capacitance and xylem hydraulic safety in four tall conifer species. Plant Cell Environ 37:1171–1183

    PubMed  Google Scholar 

  • McDowell NG, Fisher RA, Xu C, Domec J, Hölttä T, Mackay DS, Sperry JS, Boutz A, Dickman L, Gehres N (2013) Evaluating theories of drought‐induced vegetation mortality using a multimodel–experiment framework. New Phytol 200:304–321

    CAS  PubMed  Google Scholar 

  • McElrone AJ, Pockman WT, Martínez-Vilalta J, Jackson RB (2004) Variation in xylem structure and function in stems and roots of trees to 20 m depth. New Phytol 163:507–517

    Google Scholar 

  • Michaelis P (1934) Ökologische Studien an der alpinen Baumgrenze. IV. Zur Kenntnis des winterlichen Wasserhaushaltes. Jahrb Wiss Bot 80:169–247

    Google Scholar 

  • Panshin AJ, Zeeuw CD (1980) Textbook of wood technology. McGraw-Hill, New York

    Google Scholar 

  • Peterson MG, Dietterich HR, Lachenbruch B (2007) Do Douglas-fir branches and roots have juvenile wood? Wood Fiber Sci 39:651–660

    CAS  Google Scholar 

  • Petit G, Anfodillo T, De Zan C (2009) Degree of tapering of xylem conduits in stems and roots of small Pinus cembra and Larix decidua trees. Botany 87:501–508

    Google Scholar 

  • Pittermann J, Sperry J (2003) Tracheid diameter is the key trait determining the extent of freezing-induced embolism in conifers. Tree Physiol 23:907–914

    PubMed  Google Scholar 

  • Pittermann J, Sperry JS (2006) Analysis of freeze-thaw embolism in conifers. The interaction between cavitation pressure and tracheid size. Plant Physiol 140:374–382

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pittermann J, Sperry JS, Hacke UG, Wheeler JK, Sikkema EH (2005) Torus-margo pits help conifers compete with angiosperms. Science 310:1924

    CAS  PubMed  Google Scholar 

  • Pittermann J, Sperry JS, Hacke UG, Wheeler JK, Sikkema EH (2006a) Inter-tracheid pitting and the hydraulic efficiency of conifer wood: the role of tracheid allometry and cavitation protection. Am J Bot 93:1265–1273

    PubMed  Google Scholar 

  • Pittermann J, Sperry JS, Wheeler JK, Hacke UG, Sikkema EH (2006b) Mechanical reinforcement of tracheids compromises the hydraulic efficiency of conifer xylem. Plant Cell Environ 29:1618–1628

    PubMed  Google Scholar 

  • Pittermann J, Choat B, Jansen S, Stuart SA, Lynn L, Dawson TE (2010) The relationships between xylem safety and hydraulic efficiency in the Cupressaceae: the evolution of pit membrane form and function. Plant Physiol 153:1919–1931

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pittermann J, Stuart SA, Dawson TE, Moreau A (2012) Cenozoic climate change shaped the evolutionary ecophysiology of the Cupressaceae conifers. Proc Natl Acad Sci 109:9647–9652

    PubMed Central  CAS  PubMed  Google Scholar 

  • Plaut JA, Yepez EA, Hill J, Pangle R, Sperry JS, Pockman WT, McDowell NG (2012) Hydraulic limits preceding mortality in a piñon-juniper woodland under experimental drought. Plant Cell Environ 35:1601–1617

    PubMed  Google Scholar 

  • Plavcová L, Jansen S, Klepsch M, Hacke UG (2013) Nobody’s perfect: can irregularities in pit structure influence vulnerability to cavitation? Front Plant Sci 4:453

    PubMed Central  PubMed  Google Scholar 

  • Rosner S (2013) Hydraulic and biomechanical optimization in Norway spruce trunkwood—a review. IAWA J 34:365–390

    Google Scholar 

  • Rosner S, Světlík J, Andreassen K, Børja I, Dalsgaard L, Evans R, Karlsson B, Tollefsrud MM, Solberg S (2014) Wood density as a screening trait for drought sensitivity in Norway spruce. Can J For Res 44:154–161

    Google Scholar 

  • Ruiz Diaz Britez M, Sergent A-S, Martinez Meier A, Bréda N, Rozenberg P (2014) Wood density proxies of adaptive traits linked with resistance to drought in Douglas fir (Pseudotsuga menziesii (Mirb.) Franco). Trees 28:1289–1304

    Google Scholar 

  • Rundel PW, Stecker RE (1977) Morphological adaptations of tracheid structure to water stress gradients in the crown of Sequoiadendron giganteum. Oecologia 27:135–139

    Google Scholar 

  • Schoonmaker AL, Hacke UG, Landhausser SM, Lieffers VJ, Tyree MT (2010) Hydraulic acclimation to shading in boreal conifers of varying shade tolerance. Plant Cell Environ 33:382–393

    PubMed  Google Scholar 

  • Schreiber SG, Hacke UG, Hamann A, Thomas BR (2011) Genetic variation of hydraulic and wood anatomical traits in hybrid poplar and trembling aspen. New Phytol 190:150–160

    Google Scholar 

  • Schulte PJ (2012a) Computational fluid dynamics models of conifer bordered pits show how pit structure affects flow. New Phytol 193:721–729

    PubMed  Google Scholar 

  • Schulte PJ (2012b) Vertical and radial profiles in tracheid characteristics along the trunk of Douglas-fir trees with implications for water transport. Trees 26:421–433

    Google Scholar 

  • Sevanto S, Holbrook NM, Ball MC (2012) Freeze/thaw-induced embolism: probability of critical bubble formation depends on speed of ice formation. Front Plant Sci 3:107

    PubMed Central  PubMed  Google Scholar 

  • Sevanto S, McDowell NG, Dickman LT, Pangle R, Pockman WT (2014) How do trees die? A test of the hydraulic failure and carbon starvation hypotheses. Plant Cell Environ 37:153–161

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sparks JP, Black RA (2000) Winter hydraulic conductivity end xylem cavitation in coniferous trees from upper and lower treeline. Arct Antarct Alp Res 32:397–403

    Google Scholar 

  • Sparks JP, Campbell GS, Black RA (2001) Water content, hydraulic conductivity, and ice formation in winter stems of Pinus contorta: a TDR case study. Oecologia 127:468–475

    Google Scholar 

  • Sperry JS, Ikeda T (1997) Xylem cavitation in roots and stems of Douglas-fir and white fir. Tree Physiol 17:275–280

    PubMed  Google Scholar 

  • Sperry JS, Sullivan JEM (1992) Xylem embolism in response to freeze-thaw cycles and water stress in ring-porous, diffuse-porous, and conifer species. Plant Physiol 100:605–613

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sperry JS, Tyree MT (1990) Water-stress-induced xylem embolism in three species of conifers. Plant Cell Environ 13:427–436

    Google Scholar 

  • Sperry JS, Nichols KL, Sullivan JEM, Eastlack SE (1994) Xylem embolism in ring-porous, diffuse-porous, and coniferous trees of northern Utah and interior Alaska. Ecology 75:1736–1752

    Google Scholar 

  • Sperry JS, Adler FR, Campbell GS, Comstock JP (1998) Limitation of plant water use by rhizosphere and xylem conductance: results from a model. Plant Cell Environ 21:347–359

    Google Scholar 

  • Sperry JS, Hacke UG, Pittermann J (2006) Size and function in conifer tracheids and angiosperm vessels. Am J Bot 93:1490–1500

    PubMed  Google Scholar 

  • Sperry JS, Meinzer FC, McCulloh KA (2008) Safety and efficiency conflicts in hydraulic architecture: scaling from tissues to trees. Plant Cell Environ 31:632–645

    PubMed  Google Scholar 

  • Sperry JS, Smith DD, Savage V, Enquist BJ, McCulloh KA, Reich PB, Bentley LP, von Allmen EI (2012) A species-level model for metabolic scaling in trees I. Exploring boundaries to scaling space within and across species. Funct Ecol 26:1054–1065

    Google Scholar 

  • Spicer R (2005) Senescence in secondary xylem: heartwood formation as an active developmental program. In: Holbrook NM, Zwieniecki MA (eds) Vascular transport in plants. Elsevier Academic Press, Oxford, pp 457–475

    Google Scholar 

  • Sucoff E (1969) Freezing of conifer xylem and the cohesion‐tension theory. Physiol Plant 22:424–431

    Google Scholar 

  • Taylor AM, Gartner BL, Morrell JJ (2002) Heartwood formation and natural durability—a review. Wood Fiber Sci 34:587–611

    CAS  Google Scholar 

  • Taylor EL, Taylor TN, Krings M (2009) Paleobotany: the biology and evolution of fossil plants. Academic, San Diego

    Google Scholar 

  • Tranquillini W (1976) Water relations and alpine timberline. In: Lange OL, Kappen L, Schulze E-D (eds) Water and plant life. Ecological studies, vol 19. Springer, Berlin, pp 473–491

    Google Scholar 

  • Tyree MT, Ewers FW (1991) Tansley review no. 34: the hydraulic architecture of trees and other woody plants. New Phytol 119:345–360

    Google Scholar 

  • Tyree MT, Davis SD, Cochard H (1994) Biophysical perspectives of xylem evolution—is there a tradeoff of hydraulic efficiency for vulnerability to dysfunction. IAWA J 15:335–360

    Google Scholar 

  • West AG, Hultine KR, Sperry JS, Bush SE, Ehleringer JR (2008) Transpiration and hydraulic strategies in a pinon-juniper woodland. Ecol Appl 18:911–927

    CAS  PubMed  Google Scholar 

  • Willson CJ, Manos PS, Jackson RB (2008) Hydraulic traits are influenced by phylogenetic history in the drought-resistant, invasive genus Juniperus (Cupressaceae). Am J Bot 95:299–314

    CAS  PubMed  Google Scholar 

  • Wilson JP, Knoll AH (2010) A physiologically explicit morphospace for tracheid-based water transport in modern and extinct seed plants. Paleobiology 36:335–355

    Google Scholar 

  • Wilson JP, Knoll AH, Holbrook NM, Marshall CR (2008) Modeling fluid flow in Medullosa, an anatomically unusual Carboniferous seed plant. Paleobiology 34:472–493

    Google Scholar 

  • Woodruff DR, McCulloh KA, Warren JM, Meinzer FC, Lachenbruch B (2007) Impacts of tree height on leaf hydraulic architecture and stomatal control in Douglas‐fir. Plant Cell Environ 30:559–569

    PubMed  Google Scholar 

  • Zhang Y-J, Rockwell FE, Wheeler JK, Holbrook NM (2014) Reversible deformation of transfusion tracheids in Taxus baccata is associated with a reversible decrease in leaf hydraulic conductance. Plant Physiol 165(4):1557–1565

    Google Scholar 

  • Zwieniecki MA, Holbrook NM (2009) Confronting Maxwell’s demon: biophysics of xylem embolism repair. Trends Plant Sci 14:530–534

    CAS  PubMed  Google Scholar 

  • Zwieniecki MA, Stone HA, Leigh A, Boyce CK, Holbrook NM (2006) Hydraulic design of pine needles: one‐dimensional optimization for single‐vein leaves. Plant Cell Environ 29:803–809

    PubMed  Google Scholar 

Download references

Acknowledgments

Thanks to Sabine Rosner for sharing her data on Norway spruce. Thanks also to Peter Schmid for providing dye staining pictures. U. Hacke gratefully acknowledges support from the Canada Research Chair Program, NSERC, and the Canada Foundation for Innovation. J.-C. Domec was supported by NSF-IOS (award 2011-46746) and by the USDA-AFRI (awards 2011-68002 and 2012-00857). S. Mayr was supported by the Austrian Science Fund (FWF), project I826-B25.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe G. Hacke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hacke, U.G., Lachenbruch, B., Pittermann, J., Mayr, S., Domec, JC., Schulte, P.J. (2015). The Hydraulic Architecture of Conifers. In: Hacke, U. (eds) Functional and Ecological Xylem Anatomy. Springer, Cham. https://doi.org/10.1007/978-3-319-15783-2_2

Download citation

Publish with us

Policies and ethics