Skip to main content

Molecular Mechanisms in Gastric Carcinogenesis

  • Chapter
  • First Online:
Gastric Cancer

Abstract

Gastric cancer is the fourth most common malignancy worldwide and the second leading cause of cancer-related death. Despite advances in the medical and surgical management of this neoplasm, mortality remains high at approximately 60–80 % at 5 years. A number of factors have been proposed to account for these disappointing results. These include a lack of understanding of the molecular events driving carcinogenesis and the blanket application of cytotoxic therapies into patients with advanced disease without considering the genetic abnormalities underlying their disease. Recently, numerous studies have emerged elucidating the aberrations in tumor suppressors and oncogenes at the genetic and epigenetic levels. These have led to the discovery of key driver mutations thought to underlie the malignant process in gastric cancer. Such studies have permitted the classification of gastric tumor types along molecular as opposed to histologic lines. Accordingly, a number of genes have emerged as attractive targets for individualized therapies. In this chapter, the molecular mechanisms underlying gastric carcinogenesis are reviewed at the genetic and epigenetic levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Karimi P, Islami F, Anandasabapathy S, Freedman ND, Kamangar F. Gastric cancer: descriptive epidemiology, risk factors, screening, and prevention. Cancer Epidemiol Biomarkers Prev. 2014;23:700–13.

    PubMed Central  PubMed  Google Scholar 

  2. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55:74–108.

    PubMed  Google Scholar 

  3. Cervantes A, Roda D, Tarazona N, Rosello S, Perez-Fidalgo JA. Current questions for the treatment of advanced gastric cancer. Cancer Treat Rev. 2013;39:60–7.

    CAS  PubMed  Google Scholar 

  4. Proserpio I, Rausei S, Barzaghi S, Frattini F, Galli F, Iovino D, Rovera F, Boni L, Dionigi G, Pinotti G. Multimodal treatment of gastric cancer. World J Gastrointest Surg. 2014;6:55–8.

    PubMed Central  PubMed  Google Scholar 

  5. Rosa F, Alfieri S, Tortorelli AP, Fiorillo C, Costamagna G, Doglietto GB. Trends in clinical features, postoperative outcomes, and long-term survival for gastric cancer: a Western experience with 1278 patients over 30 years. World J Surg Oncol. 2014;12:217.

    PubMed Central  PubMed  Google Scholar 

  6. Zheng L, Wu C, Xi P, Zhu M, Zhang L, Chen S, Li X, Gu J, Zheng Y. The survival and the long-term trends of patients with gastric cancer in Shanghai, China. BMC Cancer. 2014;14:300.

    PubMed Central  PubMed  Google Scholar 

  7. Bernards N, Creemers GJ, Nieuwenhuijzen GA, Bosscha K, Pruijt JF, Lemmens VE. No improvement in median survival for patients with metastatic gastric cancer despite increased use of chemotherapy. Ann Oncol. 2013;24:3056–60.

    CAS  PubMed  Google Scholar 

  8. Sehdev A, Catenacci DV. Gastroesophageal cancer: focus on epidemiology, classification, and staging. Discov Med. 2013;16:103–11.

    PubMed  Google Scholar 

  9. Abreu MT, Peek RM Jr. Gastrointestinal malignancy and the microbiome. Gastroenterology. 2014;146:1534–46.e1533.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Vucenik I, Stains JP. Obesity and cancer risk: evidence, mechanisms, and recommendations. Ann N Y Acad Sci. 2012;1271:37–43.

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Cho JY. Molecular diagnosis for personalized target therapy in gastric cancer. J Gastric Cancer. 2013;13:129–35.

    PubMed Central  PubMed  Google Scholar 

  12. Wu WK, Cho CH, Lee CW, Fan D, Wu K, Yu J, Sung JJ. Dysregulation of cellular signaling in gastric cancer. Cancer Lett. 2010;295:144–53.

    CAS  PubMed  Google Scholar 

  13. The Cancer Genome Atlas Research, Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014. Advance online publication.

    Google Scholar 

  14. Tong F, Cao P, Yin Y, Xia S, Lai R, Liu S. MicroRNAs in gastric cancer: from benchtop to bedside. Dig Dis Sci. 2014;59:24–30.

    CAS  PubMed  Google Scholar 

  15. Qu Y, Dang S, Hou P. Gene methylation in gastric cancer. Clin Chim Acta. 2013;424:53–65.

    CAS  PubMed  Google Scholar 

  16. Wang K, Yuen ST, Xu J, Lee SP, Yan HH, Shi ST, Siu HC, Deng S, Chu KM, Law S, et al. Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer. Nat Genet. 2014;46:573–82.

    CAS  PubMed  Google Scholar 

  17. Lei Z, Tan IB, Das K, Deng N, Zouridis H, Pattison S, Chua C, Feng Z, Guan YK, Ooi CH, et al. Identification of molecular subtypes of gastric cancer with different responses to PI3-kinase inhibitors and 5-fluorouracil. Gastroenterology. 2013;145:554–65.

    CAS  PubMed  Google Scholar 

  18. Zouridis H, Deng N, Ivanova T, Zhu Y, Wong B, Huang D, Wu YH, Wu Y, Tan IB, Liem N, et al. Methylation subtypes and large-scale epigenetic alterations in gastric cancer. Sci Transl Med. 2012;4:156ra140.

    PubMed  Google Scholar 

  19. Shah MA, Khanin R, Tang L, Janjigian YY, Klimstra DS, Gerdes H, Kelsen DP. Molecular classification of gastric cancer: a new paradigm. Clin Cancer Res. 2011;17:2693–701.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Wang K, Kan J, Yuen ST, Shi ST, Chu KM, Law S, Chan TL, Kan Z, Chan AS, Tsui WY, et al. Exome sequencing identifies frequent mutation of ARID1A in molecular subtypes of gastric cancer. Nat Genet. 2011;43:1219–23.

    CAS  PubMed  Google Scholar 

  21. Zang ZJ, Cutcutache I, Poon SL, Zhang SL, McPherson JR, Tao J, Rajasegaran V, Heng HL, Deng N, Gan A, et al. Exome sequencing of gastric adenocarcinoma identifies recurrent somatic mutations in cell adhesion and chromatin remodeling genes. Nat Genet. 2012;44:570–4.

    CAS  PubMed  Google Scholar 

  22. Morishita A, Gong J, Masaki T. Targeting receptor tyrosine kinases in gastric cancer. World J Gastroenterol. 2014;20:4536–45.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Yoong J, Michael M, Leong T. Targeted therapies for gastric cancer: current status. Drugs. 2011;71:1367–84.

    CAS  PubMed  Google Scholar 

  24. Bellini MF, Cadamuro AC, Succi M, Proenca MA, Silva AE. Alterations of the TP53 gene in gastric and esophageal carcinogenesis. J Biomed Biotechnol. 2012;2012: 891961.

    PubMed Central  PubMed  Google Scholar 

  25. Yoda Y, Takeshima H, Niwa T, Kim JG, Ando T, Kushima R, Sugiyama T, Katai H, Noshiro H, Ushijima T. Integrated analysis of cancer-related pathways affected by genetic and epigenetic alterations in gastric cancer. Gastric Cancer. 2014;18(1):68–76.

    Google Scholar 

  26. Shiotani A, Nishi R, Uedo N, Iishi H, Tsutsui H, Ishii M, Imamura H, Kamada T, Hata J, Haruma K. Helicobacter pylori eradication prevents extension of intestinalization even in the high-risk group for gastric cancer. Digestion. 2010;81:223–30.

    PubMed  Google Scholar 

  27. Shiratsu K, Higuchi K, Nakayama J. Loss of gastric gland mucin-specific O-glycan is associated with progression of differentiated-type adenocarcinoma of the stomach. Cancer Sci. 2014;105:126–33.

    CAS  PubMed  Google Scholar 

  28. Karasawa F, Shiota A, Goso Y, Kobayashi M, Sato Y, Masumoto J, Fujiwara M, Yokosawa S, Muraki T, Miyagawa S, et al. Essential role of gastric gland mucin in preventing gastric cancer in mice. J Clin Invest. 2012;122:923–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Baum B, Georgiou M. Dynamics of adherens junctions in epithelial establishment, maintenance, and remodeling. J Cell Biol. 2011;192:907–17.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Bardram L, Hansen TV, Gerdes AM, Timshel S, Friis-Hansen L, Federspiel B. Prophylactic total gastrectomy in hereditary diffuse gastric cancer: identification of two novel CDH1 gene mutations-a clinical observational study. Fam Cancer. 2014;13:231–42.

    CAS  PubMed  Google Scholar 

  31. Kawanishi J, Kato J, Sasaki K, Fujii S, Watanabe N, Niitsu Y. Loss of E-cadherin-dependent cell-cell adhesion due to mutation of the beta-catenin gene in a human cancer cell line, HSC-39. Mol Cell Biol. 1995;15:1175–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Whitehead J, Vignjevic D, Futterer C, Beaurepaire E, Robine S, Farge E. Mechanical factors activate beta-catenin-dependent oncogene expression in APC mouse colon. HFSP J. 2008;2:286–94.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Fanjul-Fernandez M, Quesada V, Cabanillas R, Cadinanos J, Fontanil T, Obaya A, Ramsay AJ, Llorente JL, Astudillo A, Cal S, et al. Cell-cell adhesion genes CTNNA2 and CTNNA3 are tumour suppressors frequently mutated in laryngeal carcinomas. Nat Commun. 2013;4:2531.

    PubMed  Google Scholar 

  34. Ji H, Wang J, Fang B, Fang X, Lu Z. Alpha-Catenin inhibits glioma cell migration, invasion, and proliferation by suppression of beta-catenin transactivation. J Neurooncol. 2011;103:445–51.

    CAS  PubMed  Google Scholar 

  35. Cui Y, Yamada S. N-cadherin dependent collective cell invasion of prostate cancer cells is regulated by the N-terminus of alpha-catenin. PLoS ONE. 2013;8:e55069.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Rieger-Christ KM, Cain JW, Braasch JW, Dugan JM, Silverman ML, Bouyounes B, Libertino JA, Summerhayes IC. Expression of classic cadherins type I in urothelial neoplastic progression. Hum Pathol. 2001;32:18–23.

    CAS  PubMed  Google Scholar 

  37. Leve F, Morgado-Diaz JA. Rho GTPase signaling in the development of colorectal cancer. J Cell Biochem. 2012;113:2549–59.

    CAS  PubMed  Google Scholar 

  38. Komiya Y, Habas R. Wnt signal transduction pathways. Organogenesis. 2008;4:68–75.

    PubMed Central  PubMed  Google Scholar 

  39. Ogasawara N, Tsukamoto T, Mizoshita T, Inada K, Cao X, Takenaka Y, Joh T, Tatematsu M. Mutations and nuclear accumulation of beta-catenin correlate with intestinal phenotypic expression in human gastric cancer. Histopathology. 2006;49:612–21.

    CAS  PubMed  Google Scholar 

  40. Miyazawa K, Iwaya K, Kuroda M, Harada M, Serizawa H, Koyanagi Y, Sato Y, Mizokami Y, Matsuoka T, Mukai K. Nuclear accumulation of beta-catenin in intestinal-type gastric carcinoma: correlation with early tumor invasion. Virchows Arch. 2000;437:508–13.

    CAS  PubMed  Google Scholar 

  41. Qu Y, Ray PS, Li J, Cai Q, Bagaria SP, Moran C, Sim MS, Zhang J, Turner RR, Zhu Z, et al. High levels of secreted frizzled-related protein 1 correlate with poor prognosis and promote tumourigenesis in gastric cancer. Eur J Cancer. 2013;49:3718–28.

    CAS  PubMed  Google Scholar 

  42. Vincan E, Barker N. The upstream components of the Wnt signalling pathway in the dynamic EMT and MET associated with colorectal cancer progression. Clin Exp Metastasis. 2008;25:657–63.

    CAS  PubMed  Google Scholar 

  43. Koo BK, Spit M, Jordens I, Low TY, Stange DE, van de Wetering M, van Es JH, Mohammed S, Heck AJ, Maurice MM, et al. Tumour suppressor RNF43 is a stem-cell E3 ligase that induces endocytosis of Wnt receptors. Nature. 2012;488:665–9.

    CAS  PubMed  Google Scholar 

  44. Ai X, Wu Y, Zhang W, Zhang Z, Jin G, Zhao J, Yu J, Lin Y, Zhang W, Liang H, et al. Targeting the ERK pathway reduces liver metastasis of Smad4-inactivated colorectal cancer. Cancer Biol Ther. 2013;14:1059–67.

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Javle M, Li Y, Tan D, Dong X, Chang P, Kar S, Li D. Biomarkers of TGF-beta signaling pathway and prognosis of pancreatic cancer. PLoS ONE. 2014;9:e85942.

    PubMed Central  PubMed  Google Scholar 

  46. Bertran E, Crosas-Molist E, Sancho P, Caja L, Lopez-Luque J, Navarro E, Egea G, Lastra R, Serrano T, Ramos E, et al. Overactivation of the TGFbeta pathway confers a mesenchymal-like phenotype and CXCR4-dependent migratory properties to liver tumor cells. Hepatology. 2013;58:2032–44.

    CAS  PubMed  Google Scholar 

  47. Han SU, Kim HT, Seong DH, Kim YS, Park YS, Bang YJ, Yang HK, Kim SJ. Loss of the Smad3 expression increases susceptibility to tumorigenicity in human gastric cancer. Oncogene. 2004;23:1333–41.

    CAS  PubMed  Google Scholar 

  48. Kobayashi K, Okamoto T, Takayama S, Akiyama M, Ohno T, Yamada H. Genetic instability in intestinal metaplasia is a frequent event leading to well-differentiated early adenocarcinoma of the stomach. Eur J Cancer. 2000;36:1113–9.

    CAS  PubMed  Google Scholar 

  49. Chang J, Park K, Bang YJ, Kim WS, Kim D, Kim SJ. Expression of transforming growth factor beta type II receptor reduces tumorigenicity in human gastric cancer cells. Cancer Res. 1997;57:2856–9.

    CAS  PubMed  Google Scholar 

  50. Falchetti M, Saieva C, Lupi R, Masala G, Rizzolo P, Zanna I, Ceccarelli K, Sera F, Mariani-Costantini R, Nesi G, et al. Gastric cancer with high-level microsatellite instability: target gene mutations, clinicopathologic features, and long-term survival. Hum Pathol. 2008;39:925–32.

    CAS  PubMed  Google Scholar 

  51. Mishra L, Shetty K, Tang Y, Stuart A, Byers SW. The role of TGF-beta and Wnt signaling in gastrointestinal stem cells and cancer. Oncogene. 2005;24:5775–89.

    CAS  PubMed  Google Scholar 

  52. Xu Y, Man X, Lv Z, Li D, Sun Z, Chen H, Wang Z, Luo Y, Xu H. Loss of heterozygosity at chromosomes 1p35-pter, 4q, and 18q and protein expression differences between adenocarcinomas of the distal stomach and gastric cardia. Hum Pathol. 2012;43:2308–17.

    CAS  PubMed  Google Scholar 

  53. Park SH, Kim YS, Park BK, Hougaard S, Kim SJ. Sequence-specific enhancer binding protein is responsible for the differential expression of ERT/ESX/ELF-3/ESE-1/jen gene in human gastric cancer cell lines: implication for the loss of TGF-beta type II receptor expression. Oncogene. 2001;20:1235–45.

    CAS  PubMed  Google Scholar 

  54. Agarkar VB, Babayeva ND, Wilder PJ, Rizzino A, Tahirov TH. Crystal structure of mouse Elf3 C-terminal DNA-binding domain in complex with type II TGF-beta receptor promoter DNA. J Mol Biol. 2010;397:278–89.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Wu CW, Li AF, Chi CW, Chung WW, Liu TY, Lui WY, P’Eng FK. Hepatocyte growth factor and Met/HGF receptors in patients with gastric adenocarcinoma. Oncol Rep. 1998;5:817–22.

    CAS  PubMed  Google Scholar 

  56. Teng L, Lu J. cMET as a potential therapeutic target in gastric cancer [Review]. Int J Mol Med. 2013;32:1247–54.

    CAS  PubMed  Google Scholar 

  57. Scagliotti GV, Novello S, von Pawel J. The emerging role of MET/HGF inhibitors in oncology. Cancer Treat Rev. 2013;39:793–801.

    CAS  PubMed  Google Scholar 

  58. Cao B, Su Y, Oskarsson M, Zhao P, Kort EJ, Fisher RJ, Wang LM, Vande Woude GF. Neutralizing monoclonal antibodies to hepatocyte growth factor/scatter factor [HGF/SF] display antitumor activity in animal models. Proc Natl Acad Sci U S A. 2001;98:7443–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Lee JH, Han SU, Cho H, Jennings B, Gerrard B, Dean M, Schmidt L, Zbar B, Vande Woude GF. A novel germ line juxtamembrane Met mutation in human gastric cancer. Oncogene. 2000;19:4947–53.

    CAS  PubMed  Google Scholar 

  60. Rong S, Bodescot M, Blair D, Dunn J, Nakamura T, Mizuno K, Park M, Chan A, Aaronson S, Vande Woude GF. Tumorigenicity of the met proto-oncogene and the gene for hepatocyte growth factor. Mol Cell Biol. 1992;12:5152–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Soman NR, Correa P, Ruiz BA, Wogan GN. The TPR-MET oncogenic rearrangement is present and expressed in human gastric carcinoma and precursor lesions. Proc Natl Acad Sci U S A. 1991;88:4892–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Inoue T, Kataoka H, Goto K, Nagaike K, Igami K, Naka D, Kitamura N, Miyazawa K. Activation of c-Met [hepatocyte growth factor receptor] in human gastric cancer tissue. Cancer Sci. 2004;95:803–8.

    CAS  PubMed  Google Scholar 

  63. Chen JH, Wu CW, Kao HL, Chang HM, Li AF, Liu TY, Chi CW. Effects of COX-2 inhibitor on growth of human gastric cancer cells and its relation to hepatocyte growth factor. Cancer Lett. 2006;239:263–70.

    CAS  PubMed  Google Scholar 

  64. Wu CW, Chi CW, Su TL, Liu TY, Lui WY, P’Eng FK. Serum hepatocyte growth factor level associate with gastric cancer progression. Anticancer Res. 1998;18:3657–9.

    CAS  PubMed  Google Scholar 

  65. Tanaka K, Miki C, Wakuda R, Kobayashi M, Tonouchi H, Kusunoki M. Circulating level of hepatocyte growth factor as a useful tumor marker in patients with early-stage gastric carcinoma. Scand J Gastroenterol. 2004;39:754–60.

    CAS  PubMed  Google Scholar 

  66. Rex K, Lewis XZ, Gobalakrishnan S, Glaus C, Silva MD, Radinsky R, Burgess TL, Gambhir SS, Coxon A. Evaluation of the antitumor effects of rilotumumab by PET imaging in a U-87 MG mouse xenograft model. Nucl Med Biol. 2013;40:458–63.

    CAS  PubMed  Google Scholar 

  67. Iveson T, Donehower RC, Davidenko I, Tjulandin S, Deptala A, Harrison M, Nirni S, Lakshmaiah K, Thomas A, Jiang Y, et al. Rilotumumab in combination with epirubicin, cisplatin, and capecitabine as first-line treatment for gastric or oesophagogastric junction adenocarcinoma: an open-label, dose de-escalation phase 1b study and a double-blind, randomised phase 2 study. Lancet Oncol. 2014;15:1007–18.

    CAS  PubMed  Google Scholar 

  68. Drebber U, Baldus SE, Nolden B, Grass G, Bollschweiler E, Dienes HP, Holscher AH, Monig SP. The overexpression of c-met as a prognostic indicator for gastric carcinoma compared to p53 and p21 nuclear accumulation. Oncol Rep. 2008;19:1477–83.

    PubMed  Google Scholar 

  69. Janjigian YY, Tang LH, Coit DG, Kelsen DP, Francone TD, Weiser MR, Jhanwar SC, Shah MA. MET expression and amplification in patients with localized gastric cancer. Cancer Epidemiol Biomarkers Prev. 2011;20:1021–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Nakajima M, Sawada H, Yamada Y, Watanabe A, Tatsumi M, Yamashita J, Matsuda M, Sakaguchi T, Hirao T, Nakano H. The prognostic significance of amplification and overexpression of c-met and c-erb B-2 in human gastric carcinomas. Cancer. 1999;85:1894–902.

    CAS  PubMed  Google Scholar 

  71. Wu JG, Yu JW, Wu HB, Zheng LH, Ni XC, Li XQ, Du GY, Jiang BJ. Expressions and clinical significances of c-MET, p-MET and E2f-1 in human gastric carcinoma. BMC Res Notes. 2014;7:6.

    PubMed Central  PubMed  Google Scholar 

  72. Allgayer H, Babic R, Gruetzner K, Tarabichi A, Schildberg F, Heiss M. c-erbB-2 is of independent prognostic relevance in gastric cancer and is associated iwth the expression of tumor-associated protease systems. J Clin Oncol. 2000;18:2201–9.

    CAS  PubMed  Google Scholar 

  73. Akiyama T, Sudo C, Ogawara H, Toyoshima K, Yamamoto T. The product of the human c-erbB-2 gene: a 185-kilodalton glycoprotein with tyrosine kinase activity. Science. 1986;232:1644–6.

    CAS  PubMed  Google Scholar 

  74. Yarden Y. The EGFR family and its ligands in human cancer. Signalling mechanisms and therapeutic opportunities. Eur J Cancer. 2001;37 Suppl 4:S2–8.

    Google Scholar 

  75. Lin S, Makino K, Xia W, Matin A, Wen Y, Kwong K, Bourguignon L, Hung M. Nuclear localization of EGF receptor and its potential new role as a transcription factor. Nat Cell Biol. 2001;3:802–8.

    CAS  PubMed  Google Scholar 

  76. Williams C, Allison J, Vidal G, Burow M, Beckman B, Marrero L, Jones F. The ERBB4/HER4 receptor tyrosine kinase regulates gene expression by functioning as a STA-T5A nuclear chaperone. J Cell Biol. 2004;167:469–78.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Hofmann M, Stoss O, Shi D, et al. Assessment of a HER2 scoring system for gastric cancer: results from a validation study. Histopathology. 2008;52:797–805.

    CAS  PubMed  Google Scholar 

  78. Gravalos C, Jimeno A. HER2 in gastric cancer: a new prognostic factor and a novel therapeutic target. Ann Oncol. 2008;19:1523–9.

    CAS  PubMed  Google Scholar 

  79. Tanner M, Hollmen M, Junttila T, Kapanen A, Tommola S, Soini Y, Helin H, Salo J, Joensuu H, Sihvo E, et al. Amplification of HER-2 in gastric carcinoma: association with Topoisomerase IIalpha gene amplification, intestinal type, poor prognosis, and sensitivity to trastuzumab. Ann Oncol. 2005;16:273–9.

    CAS  PubMed  Google Scholar 

  80. Polkowski W, van Sandick J, Offerhaus G, et al. Prognostic value of Lauren’s classification and c-erbB-2 oncogene overexpression in adenocarcinoma of the esophagus and gastroesophageal junction. Ann Surg Oncol. 1999;6:290–7.

    CAS  PubMed  Google Scholar 

  81. Barros-Silva J, Leitao D, Afonso L, Vieira J, Dinis-Ribeiro M, Fragoso M, Bent M, Santos L, Ferreira P, Rego S, et al. Association of ERBB2 gene status with histopathological parameters and disease-specific survival in gastric carcinoma patients. Br J Cancer. 2009;100:487–93.

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Bozzetti C, Negri F, Lagrasta C, Crafa P, Bassano C, Tamagnini I, Gardini G, Nizzoli R, Leonardi F, Gasparro D, et al. Comparison of HER2 status in primary and paired metastatic sites of gastric carcinoma. Br J Cancer. 2011;104:1372–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Jorgensen J, Hersom M. HER2 as a prognostic marker in gastric cancer—a systematic analysis of data from the literature. J Cancer. 2012;3:137–44.

    PubMed Central  PubMed  Google Scholar 

  84. Bang Y, Chung H, Xu J, Lordick F, Sawaki A, Lipatov O, Al-Sakaff N, See C, Rueschoff J, Van Cutsem E. Pathological features of advanced gastric cancer: relationship to human epidermal growth factor receptor 2 positivity in the global screening programme of the ToGA trial. J Clin Oncol. 2009;Suppl: Abstract 4556.

    Google Scholar 

  85. Ishikawa T, Kobayashi M, Mai M, Suzuki T, Ooi A. Amplification of the c-erbB-2 [HER-2/neu] gene in gastric cancer cells. Detection by fluorescence in situ hybridization. Am J Pathol. 1997;151(3):761–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Yonemura Y, Ninomiya I, Tsugawa K, Fushida S, Fujimura T, Miyazaki I, Uchibayashi T, Endou Y, Sasaki T. Prognostic significance of c-erbB-2 gene expression in the poorly differentiated type of adenocarinoma of the stomach. Cancer Detect Prev. 1998;22:139–46.

    CAS  PubMed  Google Scholar 

  87. Lee K, Lee H, Kim Y, Yu H, Yang H, Kim W, Lee K, Choe K, Kim J. Prognostic significance of p53, nm23, PCNA and c-erbB-2 in gastric cancer. Jpn J Clin Oncol. 2003;33:173–9.

    PubMed  Google Scholar 

  88. Song H, Do Y, Kim I, Sohn S, Kwon K. Prognostic significance of immunohistochemical expression of EGFR and C-erbB-2 oncoprotein in curatively resected gastric cancer. Cancer Res Treat. 2004;36:240–5.

    PubMed Central  PubMed  Google Scholar 

  89. Fan X, Chen JY, Li C, Zhang Y, Meng F, Wu H, Feng A, Huang Q. Differences in HER2 over-expression between proximal and distal gastric cancers in the Chinese population. World J Gastroenterol. 2013;19:3316–23.

    PubMed Central  PubMed  Google Scholar 

  90. Lordick F, Bang Y, Kang YK, et al. HER2-positive advanced gastric cancer: similar HER2-positivity levels to breast cancer. Eur J Cancer. 2007;5:271.

    Google Scholar 

  91. Chua T, Merrett N. Clinicopathologic factors associated with HER2-positive gastric cancer and its impact on suvival outcomes-a systematic review. Int J Cancer. 2012;130(12):2845–56.

    CAS  PubMed  Google Scholar 

  92. Slamon D, Godolphin W, Jones L, et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science. 1989;244(4905):707–12.

    CAS  PubMed  Google Scholar 

  93. Slamon D, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001;344(11):783–92.

    CAS  PubMed  Google Scholar 

  94. Seshadri R, Firgaira F, Horsfall D, et al. Clinical significance of HER-2/neu oncogene amplification in primary breast cancer. The South Australian Breast Cancer Study Group. J Clin Oncol. 1993;11(10):1936–42.

    CAS  PubMed  Google Scholar 

  95. Yonemura Y, Ninomiya I, Yamaguchi A, Fushida S, Kimura H, Ohoyama S, Miyazaki I, Endou Y, Tanaka M, Sasaki T. Evaluation of immunoreactivity for erbB-2 protein as a marker of poor short term prognosis in gastric cancer. Cancer Res. 1991;51(3):1034–8.

    CAS  PubMed  Google Scholar 

  96. Janjigian Y, Werner D, Pauligk C, Steinmetz K, Kelsen D, Jager E, Altmannsberger H, Robinson E, Tafe L, Tang L, et al. Prognosis of metastatic gastric and gastroesophageal junction cancer by HER2 status: a European and USA International collaborative analysis. Ann Oncol. 2012;23(10):2656–62.

    CAS  PubMed  Google Scholar 

  97. Hsu J, Chen T, Tseng J, Chiu C, Liu K, Yeh C, Hwang T, Yeh T. Impact of HER-2 overexpression/amplification on the prognosis of gastric cancer patients undergoing resection: a single-center study of 1036 patients. Oncologist. 2011;16(12):1706–13.

    PubMed Central  PubMed  Google Scholar 

  98. Terashima M, Kitada K, Ochiatai A, Ichikawa W, Kurahashi I, Sakuramoto S, Katai H, Sano T, Imamura H, Sasako M. Impact of expression of human epidermal growth factor receptors EGFR and ERBB2 on survival in stage II/III gastric cancer. Clin Cancer Res. 2012;18(21):1706–13.

    Google Scholar 

  99. Piccart-Gebhart M, Procter M, Leyland-Jones B, et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med. 2005;353(16):1659–72.

    CAS  PubMed  Google Scholar 

  100. Smith I, Procter M, Gelber R, et al. 2-year follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer: a randomized controlled trial. Lancet. 2007;369(9555):29–36.

    CAS  PubMed  Google Scholar 

  101. Siliwkowski M, Lofgren J, Lewis G, et al. Non clinical studies addressing the mechanism of action of trastuzumab [Herceptin]. Semin Oncol. 1999;26(4 Suppl 12):60–70.

    Google Scholar 

  102. Cuello M, MEttenberg S, Clark A, et al. Downregulation of the erbB-2 receptor by trastuzumab [herceptin] enhances tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in breast and ovarian cancer cell lines that overexpress erbB-2. Cancer Res. 2001;61(12):4892–900.

    CAS  PubMed  Google Scholar 

  103. Bang Y, Van Cutsem E, Feyereislova A, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastroesophageal junction cancer]ToGA]: a phase 3, open-label, randomised controlled trial. Lancet. 2010;376(9742):687–97.

    CAS  PubMed  Google Scholar 

  104. Jorgensen J. Role of human epidermal growth factor receptor 2 in gastric cancer: biological and pharmacological aspects. World J Gastroenterol. 2014;20:4526–35.

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Won E, Janjigian Y, Islson D. HER2 directed therapy for gastric/esophageal cancer. Curr Treat Options Oncol. 2014;15(9):396–404.

    Google Scholar 

  106. Montemurro F, Scaltriti M. Biomarkers of drugs targeting HER-family signalling in cancer. J Pathol. 2014;232(2):219–29.

    CAS  PubMed  Google Scholar 

  107. Jung WY, Kang Y, Lee H, Mok YJ, Kim HK, Kim A, Kim BH. Expression of moesin and CD44 is associated with poor prognosis in gastric adenocarcinoma. Histopathology. 2013;63:474–81.

    PubMed  Google Scholar 

  108. Opyrchal M, Salisbury JL, Iankov I, Goetz MP, McCubrey J, Gambino MW, Malatino L, Puccia G, Ingle JN, Galanis E, et al. Inhibition of Cdk2 kinase activity selectively targets the CD44+/CD24-/Low stem-like subpopulation and restores chemosensitivity of SUM149PT triple-negative breast cancer cells. Int J Oncol. 2014;45:1193–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Nakayama N, Nakayama K, Shamima Y, Ishikawa M, Katagiri A, Iida K, Miyazaki K. Gene amplification CCNE1 is related to poor survival and potential therapeutic target in ovarian cancer. Cancer. 2010;116:2621–34.

    CAS  PubMed  Google Scholar 

  110. Wahlstrom T, Henriksson MA. Impact of MYC in regulation of tumor cell metabolism. Biochim Biophys Acta. 2014;S1874–9399(14):00192–8.

    Google Scholar 

  111. Lin DC, Xu L, Ding LW, Sharma A, Liu LZ, Yang H, Tan P, Vadgama J, Karlan BY, Lester J, et al. Genomic and functional characterizations of phosphodiesterase subtype 4D in human cancers. Proc Natl Acad Sci U S A. 2013;110:6109–14.

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Lee JW, Jeong EG, Lee SH, Nam SW, Kim SH, Lee JY, Yoo NJ, Lee SH. Mutational analysis of PTPRT phosphatase domains in common human cancers. APMIS. 2007;115:47–51.

    CAS  PubMed  Google Scholar 

  113. Wu CW, Kao HL, Li AF, Chi CW, Lin WC. Protein tyrosine-phosphatase expression profiling in gastric cancer tissues. Cancer Lett. 2006;242:95–103.

    CAS  PubMed  Google Scholar 

  114. Barros R, Freund JN, David L, Almeida R. Gastric intestinal metaplasia revisited: function and regulation of CDX2. Trends Mol Med. 2012;18:555–63.

    CAS  PubMed  Google Scholar 

  115. Song JH, Meltzer SJ. MicroRNAs in pathogenesis, diagnosis, and treatment of gastroesophageal cancers. Gastroenterology. 2012;143:35–47e32.

    CAS  PubMed  Google Scholar 

  116. Kirikoshi H, Katoh M. Expression of TFF1, TFF2 and TFF3 in gastric cancer. Int J Oncol. 2002;21:655–9.

    CAS  PubMed  Google Scholar 

  117. Iravani O, Tay BW, Chua PJ, Yip GW, Bay BH. Claudins and gastric carcinogenesis. Exp Biol Med [Maywood]. 2013;238:344–9.

    Google Scholar 

  118. Zhao X, Li X, Yuan H. microRNAs in gastric cancer invasion and metastasis. Front Biosci [Landmark Ed]. 2013;18:803–10.

    CAS  Google Scholar 

  119. Li X, Zhang Y, Shi Y, Dong G, Liang J, Han Y, Wang X, Zhao Q, Ding J, Wu K, et al. MicroRNA-107, an oncogene microRNA that regulates tumour invasion and metastasis by targeting DICER1 in gastric cancer. J Cell Mol Med. 2011;15:1887–95.

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Liang S, He L, Zhao X, Miao Y, Gu Y, Guo C, Xue Z, Dou W, Hu F, Wu K, et al. MicroRNA let-7f inhibits tumor invasion and metastasis by targeting MYH9 in human gastric cancer. PLoS One. 2011;6:e18409.

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Inoue T, Iinuma H, Ogawa E, Inaba T, Fukushima R. Clinicopathological and prognostic significance of microRNA-107 and its relationship to DICER1 mRNA expression in gastric cancer. Oncol Rep. 2012;27:1759–64.

    PubMed  Google Scholar 

  122. Korpal M, Lee ES, Hu G, Kang Y. The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem. 2008;283:14910–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Carvalho J, van Grieken NC, Pereira PM, Sousa S, Tijssen M, Buffart TE, Diosdado B, Grabsch H, Santos MA, Meijer G, et al. Lack of microRNA-101 causes E-cadherin functional deregulation through EZH2 up-regulation in intestinal gastric cancer. J Pathol. 2012;228:31–44.

    CAS  PubMed  Google Scholar 

  124. ClinicalTrials.gov. Safety study of MGAH22 in HER2-positive carcinomas. 2014.

    Google Scholar 

  125. ClinicalTrials.gov. A study of MM-111 and paclitaxel with trastuzumab in patients HER2 positive carcinomas of the distal esophagus, gastroesophageal [GE] junction and stomach. 2014.

    Google Scholar 

  126. ClinicalTrials.gov. A clinical trial evaluating the effect of ASLAN001 in patients with recurrent/metastatic gastric cancer whose tumors are either HER-2 amplified or co-expressing HER-1 and HER-2.

    Google Scholar 

  127. Pharmaceuticals, A. ASLAN pharmaceuticals—ASLAN001 [ARRY-543]—HER2/EGFR program array biopharma: array biopharma. 2013.

    Google Scholar 

  128. Oh D-Y, Lee K-W, Cho JY, Kang WK, Rha SY, Bang Y-J. A phase II open-label trial of dacomitinib monotherapy in patients with HER2-positive advanced gastric cancer after failure of at least one prior chemotherapy regimen. In 2012 Gastrointestinal Cancers Symposium. J Clin Oncol. 2012;30.

    Google Scholar 

  129. Janjigian YY, Capanu M, Gromisch CM, Kelsen DP, Ku GY, Brown KT, Schattner M, Ilson DH, Solit DB, Berger MF, et al. A phase II study of afatinib in patients [pts] with metastatic human epidermal growth factor receptor [HER2]-positive trastuzumab-refractory esophagogastric [EG] cancer. In 2013 ASCO annual meeting. 2013.

    Google Scholar 

  130. ClinicalTrials.gov. A study of pertuzumab in combination with trastuzumab and chemotherapy in patients with HER2-positive advanced gastric cancer [NCT014610579].

    Google Scholar 

  131. Tabernero J, Hoff PM, Shen L, Ohtsu A, Yu R, Eng-Wong J, Kang Y-K. Pertuzumab [P] with trastuzumab [T] and chemotherapy [CTX] in patients [pts] with HER2-positive metastatic gastric or gastroesophageal junction [GEJ] cancer: an international phase III study [JACOB]. In 2013 ASCO annual meeting. 2013.

    Google Scholar 

  132. Barok M, Tanner M, Koninki K, Isola J. Trastuzumab-DM1 is highly effective in preclinical models of HER2-positive gastric cancer. Cancer Lett. 2011;306:171–9.

    CAS  PubMed  Google Scholar 

  133. Yamashita-Kashima Y, Shu S, Harada N, Fujimoto-Ouchi K. Enhanced antitumor activity of trastuzumab emtansine [T-DM1] in combination with pertuzumab in a HER2-positive gastric cancer model. Oncol Rep. 2013;30:1087–93.

    CAS  PubMed  Google Scholar 

  134. ClinicalTrials.gov. A study of trastuzumab emtansine versus taxane in patients with advanced gastric cancer. 2014.

    Google Scholar 

  135. Hecht JR, Bang Y-J, Qin S, Chung H-C, Xu J-M, Oh Park J, Jeziorski K, Shparyk Y, Hoff PM, Sobrero AF, et al. Lapatinib in combination with capecitabine plus oxaliplatin [CapeOx] in HER2-positive advanced or metastatic gastric, esophageal, or gastroesophageal adenocarcinoma [AC]: the TRIO-013/LOGiC trial. In 2013 ASCO annual meeting. J Clin Oncol. 2013.

    Google Scholar 

  136. Satoh T, Bang Y, Wang J, Xu J, Chung H, Yeh K, Chen J, Mukaiyama A, Yoshida P, Ohtsu A. Interim safety analysis from TYTAN: a phase III Asian study of lapatinib in combination with paclitaxel as second-line therapy in gastric cancer. In 2010 ASCO annual meeting. J Clin Oncol. abstr 4057. 2010.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo E. Ferri MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cools-Lartigue, J., Baker, L., Ferri, L. (2015). Molecular Mechanisms in Gastric Carcinogenesis. In: Strong, V. (eds) Gastric Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-15826-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15826-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15825-9

  • Online ISBN: 978-3-319-15826-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics