Skip to main content

Monitoring Recent Urban Expansion and Urban Subsidence of Beijing Using ENVISAT/ASAR Time Series Datasets

  • Chapter
Remote Sensing Time Series

Abstract

With worldwide economic development and population increases, urban areas create significant stresses on the local, regional and global environment. Information about the spatial and temporal dynamics of the characteristics of urban areas is therefore needed to support sustainable urban development. Time series earth observation data obtained using radar satellites have provided effective data sources for monitoring urban areas. This chapter first describes the development of synthetic aperture radar as well as its important role in the detection and monitoring of urban areas. Then, the fundamental principle of time series radar data in monitoring urban areas is introduced and discussed. Next, to demonstrate the capacity of time series SAR (Synthetic Aperture Radar) imagery for monitoring urban areas using ENVISAT/ASAR (Environmental Satellite /Advanced Synthetic Aperture Radar) time series radar data, Beijing city in China was selected as a test site. Beijing has all of the typical problems of a megacity such as resource, environment and population problems arising from rapid urban expansion during recent decades. A C5.0 rulesets classifier and the Multi Temporal Interferometric Synthetic Aperture Radar (MTInSAR) method were used to map the urban expansion and the millimeter level urban subsidence, respectively and the results were validated via high resolution WorldView optical datasets and leveling benchmark measurement, respectively. The results demonstrate the effectiveness and high accuracy of the time series radar data for monitoring urban areas. Furthermore, the spatial-temporal characteristic of urban expansion and urban subsidence of Beijing city were analyzed. Finally, the mechanisms or driving factors for urban expansion and subsidence are addressed based on economic development, population growth and the impacts of recent Beijing government policy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ban YF, Jacob A, Gamba P (2014) Spaceborne SAR data for global urban mapping at 30 m resolution using a robust urban extractor. ISPRS J Photogramm Remote Sens (in press). doi:10.1016/j.isprsjprs.2014.08.004

  • Benedek C, Sziranyi T (2009) Change detection in optical aerial images by a multilayer conditional mixed Markov model. IEEE Trans Geosci Remote Sens 47(10):3416–3430

    Article  Google Scholar 

  • Berardino P, Fornaro G, Lanari R, Sansosti E (2002) A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans Geosci Remote Sens 40:2375–2383

    Article  Google Scholar 

  • Brown de Colstoun EC, Walthall CL (2006) Improving global scale land cover classifications with multi-directional POLDER data and a decision tree classifier. Remote Sens Environ 100(4):474–485

    Article  Google Scholar 

  • Cohen WB, Yang ZG, Kennedy R (2012) Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync-Tools Calibr Valid 114(12):2911–2924

    Google Scholar 

  • Congalton RG (1991) A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens Environ 37(1):35–46

    Article  Google Scholar 

  • Congalton RG, Green K (1999) Assessing the accuracy of remotely sensed data: principles and practices. Lewis Publishers, Boca Raton/London/New York

    Google Scholar 

  • Congalton R, Green K (2009) Assessing the accuracy of remotely sensed data: principles and practices, 2nd edn. CRC/Taylor & Francis, Boca Raton, p 183

    Google Scholar 

  • Conradsen K, Nielsen AA, Schou J, Skriver H (2003) A teststatistic in the complex Wishart distribution and its application to change detection in polarimetric SAR data. IEEE Trans Geosci Remote Sens 41(1):4–19. doi:10.1109/TGRS.2002.808066

    Article  Google Scholar 

  • Dong J, Xiao X, Chen B, Torbick N, Jin C, Zhang G, Biradar C (2013) Mapping deciduous rubber plantations through integration of PALSAR and multi-temporal Landsat imagery. Remote Sens Environ 134:392–402

    Article  Google Scholar 

  • Evrendilek F, Gulbeyaz O (2011) Boosted decision tree classifications of land cover over Turkey integrating MODIS, climate and topographic data. Int J Remote Sens 32(12):3461–3483

    Article  Google Scholar 

  • Farr TG, Kobrick M (2000) Shuttle radar topography mission produces a wealth of data. Eos Trans Am Geophys Union 81:583–585

    Article  Google Scholar 

  • Ferretti A, Prati C, Rocca F (2000) Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Trans Geosci Remote Sens 39:8–20

    Article  Google Scholar 

  • Ferretti A, Prati C, Rocca F (2001) Permanent scatterers in SAR interferometry. IEEE Trans Geosci Remote Sens 39(l):8–19

    Article  Google Scholar 

  • Foody GM (2002) Status of land cover classification accuracy assessment. Remote Sens Environ 80:185–201

    Article  Google Scholar 

  • Freund Y, Schapire RE (1996) Experiments with a new boosting algorithm. Morgan Kaufman, San Francisco

    Google Scholar 

  • Gabriel AK, Goldstein RM, Zebker HA (1989) Mapping small elevation changes over large areas: differential radar interferometry. J Geophys Res 94:9183–9191

    Article  Google Scholar 

  • Galloway DL, Hudnut KW, Ingebritsen SE, Phillips SP, Peltzer G, Rogez F, Rosen PA (1998) Detection of aquifer system compaction and land subsidence using interferometric synthetic aperture radar, Antelope Valley, Mojave Desert, California. Water Resour Res 34:2573–2585

    Article  Google Scholar 

  • Gamba P, Herold M (eds) (2009) Global mapping of human settlements: experiences, datasets, and prospects. CRC Press, Boca Raton

    Google Scholar 

  • Gamba P, Aldrighi M, Stasolla M (2011) Robust extraction of urban area extents in HR and VHR SAR images. IEEE J Select Top Appl Earth Obs Remote Sens 4(1):27–34

    Article  Google Scholar 

  • Goldstein RM, Werner CL (1998) Radar interferogram filtering for geophysical applications. Geophys Res Lett 25(21):4035–4038

    Article  Google Scholar 

  • Golub GH, Van Loan CF (1996) Matrix computation [M]. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Gu GH, Wang WX, Meng GJ (2009) Crustal movements and after the Wenchuan earthquake as detected by GPS observations. Geomatics Inform Sci Wuhan Univ 34(11):1336–1339

    Google Scholar 

  • Guo HD (2001) Radar remote sensing applications in China. CRC/Taylor & Francis Books Ltd, Boca Raton, FL

    Google Scholar 

  • Guo HD (2014) Scientific satellites for global change research, 2014. Science Press, Beijing

    Google Scholar 

  • Guo HD, Li XW (2011) Technical characteristics and potential application of the new generation SAR for Earth observation (in Chinese). Chin Sci Bull (Chin Ver) 56:1155–1168

    Article  Google Scholar 

  • Guo HD, Li XW, Zhang L (2009) Study of detecting method with advanced airborne and spaceborne synthetic aperture radar data for collapsed urban buildings from the Wenchuan earthquake. J Appl Remote Sens 3(1) 031695:1–18. doi:10.1117/1.3153902

  • Guo HD, Wang XY, Li XW, Liu G, Zhang L, Yan SY (2010) Yushu earthquake synergic analysis using multimodal SAR datasets. Chin Sci Bull 55(31):3499–3503

    Article  Google Scholar 

  • Guo HD, Yang HN, Sun ZC, Li XW, Wang C (2014) Synergistic use of optical and PolSAR imagery for urban impervious surface estimation. Photogramm Eng Remote Sens 80(1):91–102

    Article  Google Scholar 

  • Heliere F, Lin CC, Fois F, Davidson M, Thompson A, Bensi P (2009) BIOMASS: a p-band SAR earth explorer core mission candidate. In: Radar conference, IEEE, Pasadena, CA, USA, pp 1–6

    Google Scholar 

  • Hooper A (2008) A multi‐temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophys Res Lett 35(16):L16302, 1–5. doi:10.1029/2008GL034654

  • Hooper A, Zebker H, Segall P, Kampes B (2004) A new method for measuring deformation on volcanoes and other non-urban areas using InSAR persistent scatterers. Geophys Res Lett 31:L23611

    Article  Google Scholar 

  • Hooper A, Segall P, Zebker H (2007) Persistent scatterer InSAR for crustal deformation analysis, with application to Volcán Alcedo. Galapagos J Geophys Res 112:B07407

    Google Scholar 

  • Jia S, Wang HG, Luo Y (2007) The impacts of ground subsidence on urban construction in Beijing. City Geol 2(4):19–23 (in Chinese)

    Google Scholar 

  • Kampes BM, Usai S (1999) Doris: the delft object-oriented radar interferometric software [C]. In: 2nd international symposium on operationalization of remote sensing, vol 16, Enschede, p 20

    Google Scholar 

  • Kimuar H, Yamaguchi Y (2000) Detection of landslide ar.eas using satellite radar interferometry. Photogramm Eng Remote Sens 66(3):337–344

    Google Scholar 

  • Lanari R, Mora O, Manunta M et al (2004) A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms. IEEE Trans Geosci Remote Sens 42(7):1377–1386

    Article  Google Scholar 

  • Lee JS, Pottier E (2009) Polarimetric radar imaging from basics to applications. CRC Press/Taylor & Francis Group, London

    Book  Google Scholar 

  • Lee JS, Grunes MR, Grandi GD (1999) Polarimetric SAR speckle filtering and its implication for classification. IEEE Trans Geosci Remote Sens 37(5):2363–2373

    Article  Google Scholar 

  • Leinenkugel P, Kuenzer C, Oppelt N, Dech S (2013) Characterization of land surface phenology and land cover based on moderate resolution satellite data in cloud prone areas—a novel product for the Mekong Basin. Remote Sens Environ 136:180–198

    Article  Google Scholar 

  • Li XW, Pottier E, Guo HD, Ferro-Famil L (2010) Urban land cover classification with high-resolution polarimetric SAR interferometric data. Can J Remote Sens 36(3):236–247

    Article  Google Scholar 

  • Li XW, Zhang L, Guo HD, Sun ZC, Liang L (2012) New approaches of urban area change detection using multi-temporal RADARSAT-2 polarimetric SAR data. Can J Remote Sens 38(3):1–14

    Article  Google Scholar 

  • Lu Z, Mann D, Freymueller JT, Meyer DJ (2000) Synthetic aperture radar interferometry of Okmok volcano, Alaska: radar observations. J Geophys Res 105:10791–10806

    Article  Google Scholar 

  • Mark B, Seltzer G, Geoffrey O (2005) Evaluation of recent glacier recession in the Cordillera Blanca, Peru (AD 1962–1999): spatial distribution of mass loss and climatic forcing. Quat Sci Rev 24:2265–2280

    Article  Google Scholar 

  • Massonnet D, Rossi M, Carmona C, Adragna F, Peltzer G, Feigl K, Rabaute T (1993) The displacement field of the Landers earthquake mapped by radar interferometry. Nature 364:138–142

    Article  Google Scholar 

  • Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: synthesis. Island Press, Washington, DC

    Google Scholar 

  • Moreira A, Hajnsek I, Krieger G, Papathanassiou K, Eineder M, De Zan F, Younis M, Werner M (2009) TANDEM-L: monitoring the earth’s dynamics with InSAR and Pol-InSAR. In: 4th international workshop on science and applications of SAR polarimetry and polarimetric interferometry, Frascati, Italy

    Google Scholar 

  • Moser G, Serpico SB (2009) Unsupervised change detection from multichannel SAR data by Markovian data fusion. IEEE Trans Geosci Remote Sens 47(7):2114–2128. doi:10.1109/TGRS.2009.2012407

    Article  Google Scholar 

  • Mu FY, Zhang ZX, Chi YB, Liu B, Zhou QB, Wang CY, Tan WB (2007) Dynamic monitoring of built-up area in Beijing during 1973–2005 based on multi-original remote sensed images. J Remote Sens 11(2):257–268

    Google Scholar 

  • Okada Y, Nakamura S, Iribe K, Tsuji M, Hariu K, Kankaku Y, Suzuki S, Shimada M (2014) PALSAR-2 initial mission check. IGARSS, Quebec, Canada, July, pp 3423–3414

    Google Scholar 

  • Pesaresi M, Guo HD, Blaes X, Ehrlich D, Ferri S, Gueguen L, Halkia M, Kauffmann M, Kemper T, Lu LL, Marin-Herrera MA, Ouzounis GK, Scavazzon M, Soille P, Syrris V, Zanchetta L (2013) A global human settlement layer from optical HR/VHR RS data: concept and first results. IEEE J Select Top Appl Earth Obs Remote Sens 6(6):2102–2131

    Article  Google Scholar 

  • Pontius R, Millones M (2011) Death to Kappa: birth of quantity disagreement for accuracy assessment. Int J Remote Sens 32(4):407–4429

    Google Scholar 

  • Potere D (2008) Horizontal positional accuracy of Google Earth’s high-resolution imagery archive. Sensors 8:7973–7981

    Article  Google Scholar 

  • Quinlan JR (1993) C4.5: programs for machine learning. Morgan Kaufman Publishers, San Mateo

    Google Scholar 

  • Rabus B, Eineder M, Roth A, Bamler R (2003) The shuttle radar topography mission- a new class of digital elevation models acquired by spaceborne radar. ISPRS J Photogramm Remote Sens 57:241–262

    Article  Google Scholar 

  • Rignot EJM, van Zyl JJ (1993) Change detection techniques for ERS-1 SAR data. IEEE Trans Geosci Remote Sens 31(4):896–906

    Article  Google Scholar 

  • Rosen PA, Hensley S, Joughin IR, Fuk KL, Madsen SN, Rodriguez E, Goldstein RM (2000) Synthetic aperture radar interferometry. Proc IEEE 88:333–382

    Article  Google Scholar 

  • Scharroo R, Visser P (1998) Precise orbit determination and gravity field improvement for the ERS satellites. J Geophys Res 103(C4):8113–8127

    Article  Google Scholar 

  • Schubert A, Small D, Meier E, Miranda N, Geudtner D (2014) Spaceborne SAR product geolocation accuracy: A SENTINEL-1 UPDATE. IGARSS, Quebec, Canada, July, pp 1465–1468

    Google Scholar 

  • Séguin G (2010) Radarsat constellation preliminary design. In: 8th European conference on synthetic aperture radar. Offenbach, Berlin, pp 514–515

    Google Scholar 

  • Shimada M (2009) Advance land-observation satellite (alos) and its follow-on satellite, ALOS-2. In: 4th International Workshop on Science and Applications of SAR Polarimetry and Polarimetric Interferometry, Frascati, Italy

    Google Scholar 

  • Strang G (1988) Linear algebra and its applications, 3rd edn. Saunders, Philadelphia, p 5

    Google Scholar 

  • Taubenböck H, Esch T, Felbier A, Wiesner M, Roth A, Dech S (2012) Monitoring urbanization in mega cities from space. Remote Sens Environ 117:162–176

    Article  Google Scholar 

  • Wauthier C, Cayol V, Poland M (2013) Nyamulagira’s magma plumbing system inferred from 15 years of InSAR [J]. Geol Soc Lond, Spec Publ 380(1):39–65

    Article  Google Scholar 

  • Zebker HA, Rosen PA, Goldstein RM, Gabriel A, Werner CL (1994) On the derivation of co-seismic displacement fields using differential radar interferometry: the Landers earthquake. J Geophys Res 99:19617–19634

    Article  Google Scholar 

  • Zebker HA, Rosen PA, Hensley S (1997) Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps. J Geophys Res 102:7547–7563

    Article  Google Scholar 

  • Zhang L, Li XW, Guo HD (2010) Effect of aspect angle normalized PolSAR data on urban building detection. Can J Remote Sens 36(3):276–286

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by grants from National Natural Science Foundation of China (Grant No. 41120114001 and 41201357), Innovation Foundation Project of CEODE, CAS (Center for Earth Observation and Digital Earth, Chinese Academy of Sciences) (Grant No. Y2ZZ20101B), and “One-Three-Five” Strategic Planning of RADI (Institute of Remote Sensing and Digital Earth), CAS (Grant No. Y4SG0500CX).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinwu Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Li, X. et al. (2015). Monitoring Recent Urban Expansion and Urban Subsidence of Beijing Using ENVISAT/ASAR Time Series Datasets. In: Kuenzer, C., Dech, S., Wagner, W. (eds) Remote Sensing Time Series. Remote Sensing and Digital Image Processing, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-319-15967-6_19

Download citation

Publish with us

Policies and ethics