Skip to main content

Analysis of Solution Quality of a Multiobjective Optimization-Based Evolutionary Algorithm for Knapsack Problem

  • Conference paper
  • First Online:
Evolutionary Computation in Combinatorial Optimization (EvoCOP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9026))

  • 1112 Accesses

Abstract

Multi-objective optimisation is regarded as one of the most promising ways for dealing with constrained optimisation problems in evolutionary optimisation. This paper presents a theoretical investigation of a multi-objective optimisation evolutionary algorithm for solving the 0-1 knapsack problem. Two initialisation methods are considered in the algorithm: local search initialisation and greedy search initialisation. Then the solution quality of the algorithm is analysed in terms of the approximation ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A feasible solution \(\mathbf {x}\) is called a local optimum if \(f(\mathbf {y})< f(\mathbf {x})\) for any feasible solution \(\mathbf {y}\) within Hamming distance \(d(\mathbf {x},\mathbf {y})= 1\).

References

  1. Louis, S.J., Rawlins, G.: Pareto optimality, GA-easiness and deception. In: Proceedings of 5th International Conference on Genetic Algorithms, Morgan Kaufmann, pp. 118–123 (1993)

    Google Scholar 

  2. Knowles, J.D., Watson, R.A., Corne, D.W.: Reducing local optima in single-objective problems by multi-objectivization. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, p. 269. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  3. Jensen, M.T.: Helper-objectives: Using multi-objective evolutionary algorithms for single-objective optimisation. J. Math. Model. Algorithms 3(4), 323–347 (2005)

    Article  Google Scholar 

  4. Neumann, F., Wegener, I.: Minimum spanning trees made easier via multi-objective optimization. Nat. Comput. 5(3), 305–319 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Neumann, F.: Expected runtimes of a simple evolutionary algorithm for the multi-objective minimum spanning tree problem. Eur. J. Oper. Res. 181(3), 1620–1629 (2007)

    Article  MATH  Google Scholar 

  6. Friedrich, T., He, J., Hebbinghaus, N., Neumann, F., Witt, C.: Approximating covering problems by randomized search heuristics using multi-objective models. Evol. Comput. 18(4), 617–633 (2010)

    Article  Google Scholar 

  7. Segura, C., Coello, C.A.C., Miranda, G., León, C.: Using multi-objective evolutionary algorithms for single-objective optimization. 4OR 11(3), 201–228 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  8. Zhou, Y., Li, Y., He, J., Kang, L.: Multi-objective and MGG evolutionary algorithm for constrained optimisation. In: Proceedings of 2003 IEEE Congress on Evolutionary Computation, Canberra, Australia, pp. 1–5. IEEE Press (2003)

    Google Scholar 

  9. Cai, Z., Wang, Y.: A multiobjective optimization-based evolutionary algorithm for constrained optimization. IEEE Trans. Evol. Comput. 10(6), 658–675 (2006)

    Article  Google Scholar 

  10. Wang, Y., Cai, Z., Guo, G., Zhou, Y.: Multiobjective optimization and hybrid evolutionary algorithm to solve constrained optimization problems. IEEE Trans. Syst. Man Cybern. Part B 37(3), 560–575 (2007)

    Article  Google Scholar 

  11. Wang, Y., Cai, Z., Zhou, Y., Zeng, W.: An adaptive tradeoff model for constrained evolutionary optimization. IEEE Trans. Evol. Comput. 12(1), 80–92 (2008)

    Article  Google Scholar 

  12. Jiao, L., Li, L., Shang, R., Liu, F., Stolkin, R.: A novel selection evolutionary strategy for constrained optimization. Inf. Sci. 239, 122–141 (2013)

    Article  MathSciNet  Google Scholar 

  13. Wang, Y., Cai, Z.: Combining multiobjective optimization with differential evolution to solve constrained optimization problems. IEEE Trans. Evol. Comput. 16(1), 117–134 (2012)

    Article  Google Scholar 

  14. Wang, Y., Cai, Z.: A dynamic hybrid framework for constrained evolutionary optimization. IEEE Trans. Syst. Man Cybern. Part B Cybern. 42(1), 203–217 (2012)

    Article  Google Scholar 

  15. Friedrich, T., Oliveto, P., Sudholt, D., Witt, C.: Analysis of diversity-preserving mechanisms for global exploration. Evol. Comput. 17(4), 455–476 (2009)

    Article  Google Scholar 

  16. Oliveto, P.S., He, J., Yao, X.: Analysis of the (1+1)-EA for finding approximate solutions to vertex cover problems. IEEE Trans. Evol. Comput. 13(5), 1006–1029 (2009)

    Article  Google Scholar 

  17. Lai, X., Zhou, Y., He, J., Zhang, J.: Performance analysis of evolutionary algorithms for the minimum label spanning tree problem. IEEE Trans. Evol. Comput. 18(6), 860–872 (2014)

    Article  Google Scholar 

  18. Martello, S., Toth, P.: Knapsack Problems: Algorithms and Computer Implementations. Wiley, New York (1990)

    MATH  Google Scholar 

  19. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Heidelberg (2004)

    Book  MATH  Google Scholar 

  20. Michalewicz, Z., Arabas, J.: Genetic algorithms for the 0/1 knapsack problem. In: Raś, Z.W., Zemankova, M. (eds.) ISMIS 1994. LNCS, vol. 869, pp. 134–143. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  21. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs, 3rd edn. Springer, New York (1996)

    Book  MATH  Google Scholar 

  22. Kumar, R., Banerjee, N.: Analysis of a multiobjective evolutionary algorithm on the 0-1 knapsack problem. Theor. Comput. Sci. 358(1), 104–120 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Zhou, Y., He, J.: A runtime analysis of evolutionary algorithms for constrained optimization problems. IEEE Trans. Evol. Comput. 11(5), 608–619 (2007)

    Article  MathSciNet  Google Scholar 

  24. Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms. Cambridge University Press, New York (2011)

    Book  MATH  Google Scholar 

Download references

Acknowledgement

This work was partially supported by EPSRC under Grant No. EP/I009809/1 (He), by NSFC under Grant No. 61170081, 61472143 (Zhou), 61273314 and by the Program for New Century Excellent Talents in University under Grant NCET-13-0596 (Wang).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

He, J., Wang, Y., Zhou, Y. (2015). Analysis of Solution Quality of a Multiobjective Optimization-Based Evolutionary Algorithm for Knapsack Problem. In: Ochoa, G., Chicano, F. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2015. Lecture Notes in Computer Science(), vol 9026. Springer, Cham. https://doi.org/10.1007/978-3-319-16468-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16468-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16467-0

  • Online ISBN: 978-3-319-16468-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics