Skip to main content

Single Gamete Insemination Aiming at the Ideal Conceptus

  • Chapter
Screening the Single Euploid Embryo

Abstract

About 15 % of couples are unable to achieve a pregnancy due to a male factor diagnosis, and ICSI is seemingly the ideal treatment. ICSI remains the most popular choice of insemination even for simple, routine IVF cases, and a standard semen analysis alone is no longer inadequate in the modern infertility evaluation. Accordingly, the arrival of more sophisticated assays to measure the full impact and competency of the spermatozoon is welcome. To allow the embryonic genome to be read and expressed, the spermatozoon must release its oocyte-activating factor. Various assays are now being utilized to more fully ascertain the male gamete and establish its genetic integrity and its ability to sustain proper embryo development. While these attempts to select the ideal spermatozoon are laudable, they are still being tested and debated. Of note, these testing methods still do not address the clinical context where sperm numbers are extremely limited. As novel sperm selection methods continue to emerge, information regarding the long-term intergenerational effects of utilizing suboptimal sperm in IVF continues to accumulate. The increased emphasis on the gamete has stimulated the quest for new tools to more accurately diagnose and select individual spermatozoa prior to direct injection. This enables better counseling and treatment of couples while at the same time assuages worries associated with potentially passing a nonideal paternal genome onto the next generation. Reproductive specialists can thus aim to provide an ideal, singleton gestation for all patients seeking advanced reproductive assistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hull MG, Glazener CM, Kelly NJ, Conway DI, Foster PA, Hinton RA, et al. Population study of causes, treatment, and outcome of infertility. Br Med J (Clin Res Ed). 1985;291:1693–7.

    Article  CAS  Google Scholar 

  2. Irvine DS. Epidemiology and etiology of male infertility. Hum Reprod. 1998;13 Suppl 1:33–44.

    Article  PubMed  Google Scholar 

  3. Aitken RJ. Sperm function tests and fertility. Int J Androl. 2006;29:69–75. discussion 105–8.

    Article  CAS  PubMed  Google Scholar 

  4. Carrell DT. Paternal influences on human reproductive success. Cambridge: Cambridge University Press; 2013. p. 1–195.

    Book  Google Scholar 

  5. World Health Organization. WHO laboratory manual for the examination and processing of human semen. 5th ed. Geneva: World Health Organization; 2010.

    Google Scholar 

  6. Cohen J. Cross-overs, sperm redundancy and their close association. Heredity (Edinb). 1973;31:408–13.

    Article  CAS  Google Scholar 

  7. Aitken RJ, De Iuliis GN, Finnie JM, Hedges A, McLachlan RI. Analysis of the relationships between oxidative stress, DNA damage and sperm vitality in a patient population: development of diagnostic criteria. Hum Reprod. 2010;25:2415–26.

    Article  CAS  PubMed  Google Scholar 

  8. Palermo GD, Neri QV, Cozzubbo T, Rosenwaks Z. Perspectives on the assessment of human sperm chromatin integrity. Fertil Steril. 2014;102(6):1508–17.

    Article  CAS  PubMed  Google Scholar 

  9. Neri QV, Cheung S, Rosenwaks Z, Palermo GD. The quest for the less than ideal spermatozoon—does it generate good quality embryos. Hum Reprod. 2014;29:i67.

    Google Scholar 

  10. Neri QV, Hu J, Rosenwaks Z, Palermo GD. Understanding the spermatozoon. Methods Mol Biol. 2014;1154:91–119.

    Article  PubMed  Google Scholar 

  11. Palermo GD, Kocent J, Monahan D, Neri QV, Rosenwaks Z. Treatment of male infertility. Methods Mol Biol. 2014;1154:385–405.

    Article  CAS  PubMed  Google Scholar 

  12. Palermo G, Munne S, Cohen J. The human zygote inherits its mitotic potential from the male gamete. Hum Reprod. 1994;9:1220–5.

    CAS  PubMed  Google Scholar 

  13. Neri QV, Lee B, Rosenwaks Z, Machaca K, Palermo GD. Understanding fertilization through intracytoplasmic sperm injection (ICSI). Cell Calcium. 2014;55:24–37.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Sakkas D, Alvarez JG. Sperm DNA fragmentation: mechanisms of origin, impact on reproductive outcome, and analysis. Fertil Steril. 2010;93:1027–36.

    Article  CAS  PubMed  Google Scholar 

  15. Evenson DP, Darzynkiewicz Z, Melamed MR. Comparison of human and mouse sperm chromatin structure by flow cytometry. Chromosoma. 1980;78:225–38.

    Article  CAS  PubMed  Google Scholar 

  16. Gorczyca W, Traganos F, Jesionowska H, Darzynkiewicz Z. Presence of DNA strand breaks and increased sensitivity of DNA in situ to denaturation in abnormal human sperm cells: analogy to apoptosis of somatic cells. Exp Cell Res. 1993;207:202–5.

    Article  CAS  PubMed  Google Scholar 

  17. Hughes CM, Lewis SE, McKelvey-Martin VJ, Thompson W. A comparison of baseline and induced DNA damage in human spermatozoa from fertile and infertile men, using a modified comet assay. Mol Hum Reprod. 1996;2:613–9.

    Article  CAS  PubMed  Google Scholar 

  18. Manicardi GC, Bianchi PG, Pantano S, Azzoni P, Bizzaro D, Bianchi U, et al. Presence of endogenous nicks in DNA of ejaculated human spermatozoa and its relationship to chromomycin A3 accessibility. Biol Reprod. 1995;52:864–7.

    Article  CAS  PubMed  Google Scholar 

  19. Bianchi PG, Manicardi GC, Bizzaro D, Bianchi U, Sakkas D. Effect of deoxyribonucleic acid protamination on fluorochrome staining and in situ nick-translation of murine and human mature spermatozoa. Biol Reprod. 1993;49:1083–8.

    Article  CAS  PubMed  Google Scholar 

  20. Tomlinson MJ, Moffatt O, Manicardi GC, Bizzaro D, Afnan M, Sakkas D. Interrelationships between seminal parameters and sperm nuclear DNA damage before and after density gradient centrifugation: implications for assisted conception. Hum Reprod. 2001;16:2160–5.

    Article  CAS  PubMed  Google Scholar 

  21. Fernandez JL, Vazquez-Gundin F, Delgado A, Goyanes VJ, Ramiro-Diaz J, de la Torre J, et al. DNA breakage detection-FISH (DBD-FISH) in human spermatozoa: technical variants evidence different structural features. Mutat Res. 2000;453:77–82.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang LH, Qiu Y, Wang KH, Wang Q, Tao G, Wang LG. Measurement of sperm DNA fragmentation using bright-field microscopy: comparison between sperm chromatin dispersion test and terminal uridine nick-end labeling assay. Fertil Steril. 2010;94:1027–32.

    Article  CAS  PubMed  Google Scholar 

  23. Fernandez JL, Muriel L, Goyanes V, Segrelles E, Gosalvez J, Enciso M, et al. Simple determination of human sperm DNA fragmentation with an improved sperm chromatin dispersion test. Fertil Steril. 2005;84:833–42.

    Article  CAS  PubMed  Google Scholar 

  24. Evenson DP, Larson KL, Jost LK. Sperm chromatin structure assay: its clinical use for detecting sperm DNA fragmentation in male infertility and comparisons with other techniques. J Androl. 2002;23:25–43.

    PubMed  Google Scholar 

  25. Larson KL, DeJonge CJ, Barnes AM, Jost LK, Evenson DP. Sperm chromatin structure assay parameters as predictors of failed pregnancy following assisted reproductive techniques. Hum Reprod. 2000;15:1717–22.

    Article  CAS  PubMed  Google Scholar 

  26. Scala V, Fields T, Neri QV, Kocent J, Rosenwaks Z, Palermo GD. Validity of bacteriological culture for cryopreserved semen specimens. Hum Reprod. 2012;27:i65.

    Google Scholar 

  27. Seo BK, Chen C, Kocent J, Monahan D, Witzke J, Rosenwaks Z, et al. Optimization of post-thaw sperm survival. Hum Reprod. 2012;27:i90–1.

    Google Scholar 

  28. Witzke J, Kocent J, Neri QV, Rosenwaks Z, Palermo GD. Considerations on selecting the best spermatozoa for donor IUI. Hum Reprod. 2012;27:i49.

    Google Scholar 

  29. Daw C, Neri QV, Monahan D, Rosenwaks Z, Palermo GD. The impact of round cells in specimens used for ICSI. Hum Reprod. 2012;27:i92–3.

    Google Scholar 

  30. Aitken RJ, Jones KT, Robertson SA. Reactive oxygen species and sperm function–in sickness and in health. J Androl. 2012;33:1096–106.

    Article  CAS  PubMed  Google Scholar 

  31. Levine BA, Ryan D, Karipcin S, Neri QV, Rosenwaks Z, Palermo GD. Seminal plasma fructose assay revisited. Reprod Sci. 2014;21:328A.

    Google Scholar 

  32. Smith MJ, Neri QV, Harvey L, Rosenwaks Z, Palermo GD. Antioxidant power of seminal plasma on male gamete competence. Hum Reprod. 2013;28:i125–6.

    Article  Google Scholar 

  33. Neri QV, Monahan D, Rosenwaks Z, Palermo GD. Intracytoplasmic sperm injection: technical aspects. 4th ed. London: Informa Healthcare; 2012.

    Google Scholar 

  34. Ramasamy R, Reifsnyder JE, Bryson C, Zaninovic N, Liotta D, Cook CA, et al. Role of tissue digestion and extensive sperm search after microdissection testicular sperm extraction. Fertil Steril. 2011;96:299–302.

    Article  PubMed  Google Scholar 

  35. Berookhim BM, Schlegel PN. Azoospermia due to spermatogenic failure. Urol Clin North Am. 2014;41:97–113.

    Article  PubMed  Google Scholar 

  36. Schlegel PN, Palermo GD, Goldstein M, Menendez S, Zaninovic N, Veeck LL, et al. Testicular sperm extraction with intracytoplasmic sperm injection for nonobstructive azoospermia. Urology. 1997;49:435–40.

    Article  CAS  PubMed  Google Scholar 

  37. Cheung S, Neri QV, Rosenwaks Z, Palermo GD. Role of paternal age on embryo development through meiotic errors. Fertil Steril. 2014;102(3), e97.

    Article  Google Scholar 

  38. Humm KC, Sakkas D. Role of increased male age in IVF and egg donation: is sperm DNA fragmentation responsible? Fertil Steril. 2013;99:30–6.

    Article  CAS  PubMed  Google Scholar 

  39. Virro MR, Larson-Cook KL, Evenson DP. Sperm chromatin structure assay (SCSA) parameters are related to fertilization, blastocyst development, and ongoing pregnancy in in vitro fertilization and intracytoplasmic sperm injection cycles. Fertil Steril. 2004;81:1289–95.

    Article  PubMed  Google Scholar 

  40. Zanko A, Cozzubbo T, Neri QV, Rosenwaks Z, Palermo GD. Revisiting DNA integrity in function of sperm motility. Hum Reprod. 2014;29:i65.

    Article  Google Scholar 

  41. Neri QV, Scala V, Rosenwaks Z, Palermo GD. Assessment of the sperm centrosome. Fertil Steril. 2011;96:S235–6.

    Article  Google Scholar 

  42. Palermo GD, Colombero LT, Rosenwaks Z. The human sperm centrosome is responsible for normal syngamy and early embryonic development. Rev Reprod. 1997;2:19–27.

    Article  CAS  PubMed  Google Scholar 

  43. Neri QV. Tweaking human fertilization. In: Reproductive medicine, clinical & translation science center. New York, NY: Weill Cornell Medical College; 2010. p. 24.

    Google Scholar 

  44. Neri QV, Monahan D, Kocent J, Hu JCY, Rosenwaks Z, Palermo GD. Assessing and restoring sperm fertilizing competence. Fertil Steril. 2010;94:S147.

    Article  Google Scholar 

  45. Tanaka A, Nagayoshi M, Awata S, Tanaka I, Kusunoki H, Watanabe S. Are crater defects in human sperm heads physiological changes during spermiogenesis? Fertil Steril. 2009;92:S165.

    Article  Google Scholar 

  46. Watanabe S, Tanaka A, Fujii S, Misunuma H. No relationship between chromosome aberrations and vacuole-like structures on human sperm head. Hum Reprod. 2009;24:i94–6.

    Article  Google Scholar 

  47. Bartoov B, Berkovitz A, Eltes F, Kogosovsky A, Yagoda A, Lederman H, et al. Pregnancy rates are higher with intracytoplasmic morphologically selected sperm injection than with conventional intracytoplasmic injection. Fertil Steril. 2003;80:1413–9.

    Article  PubMed  Google Scholar 

  48. Mortimer ST, Swan MA. The development of smoothing-independent kinematic measures of capacitating human sperm movement. Hum Reprod. 1999;14:986–96.

    Article  CAS  PubMed  Google Scholar 

  49. Ainsworth C, Nixon B, Aitken RJ. Development of a novel electrophoretic system for the isolation of human spermatozoa. Hum Reprod. 2005;20:2261–70.

    Article  CAS  PubMed  Google Scholar 

  50. Koppers AJ, Mitchell LA, Wang P, Lin M, Aitken RJ. Phosphoinositide 3-kinase signalling pathway involvement in a truncated apoptotic cascade associated with motility loss and oxidative DNA damage in human spermatozoa. Biochem J. 2011;436:687–98.

    Article  CAS  PubMed  Google Scholar 

  51. Said TM, Agarwal A, Grunewald S, Rasch M, Glander HJ, Paasch U. Evaluation of sperm recovery following annexin V magnetic-activated cell sorting separation. Reprod Biomed Online. 2006;13:336–9.

    Article  PubMed  Google Scholar 

  52. Huszar G, Jakab A, Sakkas D, Ozenci CC, Cayli S, Delpiano E, et al. Fertility testing and ICSI sperm selection by hyaluronic acid binding: clinical and genetic aspects. Reprod Biomed Online. 2007;14:650–63.

    Article  PubMed  Google Scholar 

  53. Lazaros LA, Vartholomatos GA, Hatzi EG, Kaponis AI, Makrydimas GV, Kalantaridou SN, et al. Assessment of sperm chromatin condensation and ploidy status using flow cytometry correlates to fertilization, embryo quality and pregnancy following in vitro fertilization. J Assist Reprod Genet. 2011;28:885–91.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Antinori M, Licata E, Dani G, Cerusico F, Versaci C, d’Angelo D, et al. Intracytoplasmic morphologically selected sperm injection: a prospective randomized trial. Reprod Biomed Online. 2008;16:835–41.

    Article  PubMed  Google Scholar 

  55. Sun F, Ko E, Martin RH. Is there a relationship between sperm chromosome abnormalities and sperm morphology? Reprod Biol Endocrinol. 2006;4:1.

    Article  PubMed Central  PubMed  Google Scholar 

  56. Magli MC, Crippa A, Muzii L, Boudjema E, Capoti A, Scaravelli G, et al. Head birefringence properties are associated with acrosome reaction, sperm motility and morphology. Reprod Biomed Online. 2012;24:352–9.

    Article  CAS  PubMed  Google Scholar 

  57. Huszar G, Ozenci CC, Cayli S, Zavaczki Z, Hansch E, Vigue L. Hyaluronic acid binding by human sperm indicates cellular maturity, viability, and unreacted acrosomal status. Fertil Steril. 2003;79 Suppl 3:1616–24.

    Article  PubMed  Google Scholar 

  58. Parmegiani L, Cognigni GE, Bernardi S, Troilo E, Ciampaglia W, Filicori M. “Physiologic ICSI”: hyaluronic acid (HA) favors selection of spermatozoa without DNA fragmentation and with normal nucleus, resulting in improvement of embryo quality. Fertil Steril. 2010;93:598–604.

    Article  PubMed  Google Scholar 

  59. Aitken RJ, Baker MA. Causes and consequences of apoptosis in spermatozoa; contributions to infertility and impacts on development. Int J Dev Biol. 2013;57:265–72.

    Article  CAS  PubMed  Google Scholar 

  60. Ward WS. Function of sperm chromatin structural elements in fertilization and development. Mol Hum Reprod. 2010;16:30–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Elias R, Neri QV, Fields T, Schlegel PN, Rosenwaks Z, Palermo GD. Origin and role of transient DNA strand breaks during spermiogenesis. Hum Reprod. 2013;28:i187.

    Google Scholar 

  62. Greco E, Scarselli F, Iacobelli M, Rienzi L, Ubaldi F, Ferrero S, et al. Efficient treatment of infertility due to sperm DNA damage by ICSI with testicular spermatozoa. Hum Reprod. 2005;20:226–30.

    Article  PubMed  Google Scholar 

  63. Johanesen L, Cozzubbo T, Neri QV, Goldstein M, Schlegel PN, Rosenwaks Z, et al. Topographic mapping of sperm DNA fragmentation within the male genital tract. Hum Reprod. 2014;29:i66–7.

    Google Scholar 

  64. Hammoud SS, Purwar J, Pflueger C, Cairns BR, Carrell DT. Alterations in sperm DNA methylation patterns at imprinted loci in two classes of infertility. Fertil Steril. 2010;94:1728–33.

    Article  CAS  PubMed  Google Scholar 

  65. Aitken RJ, Baker MA. The role of proteomics in understanding sperm cell biology. Int J Androl. 2008;31:295–302.

    Article  CAS  PubMed  Google Scholar 

  66. Baker MA, Reeves G, Hetherington L, Muller J, Baur I, Aitken RJ. Identification of gene products present in Triton X-100 soluble and insoluble fractions of human spermatozoa lysates using LC-MS/MS analysis. Proteomics Clin Appl. 2007;1:524–32.

    Article  CAS  PubMed  Google Scholar 

  67. McReynolds S, Dzieciatkowska M, Stevens J, Hansen KC, Schoolcraft WB, Katz-Jaffe MG. Toward the identification of a subset of unexplained infertility: a sperm proteomic approach. Fertil Steril. 2014;102:692–9.

    Article  PubMed  Google Scholar 

  68. Miller D, Tang PZ, Skinner C, Lilford R. Differential RNA fingerprinting as a tool in the analysis of spermatozoal gene expression. Hum Reprod. 1994;9:864–9.

    CAS  PubMed  Google Scholar 

  69. Krawetz SA, Kruger A, Lalancette C, Tagett R, Anton E, Draghici S, et al. A survey of small RNAs in human sperm. Hum Reprod. 2011;26:3401–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Lalancette C, Thibault C, Bachand I, Caron N, Bissonnette N. Transcriptome analysis of bull semen with extreme nonreturn rate: use of suppression-subtractive hybridization to identify functional markers for fertility. Biol Reprod. 2008;78:618–35.

    Article  CAS  PubMed  Google Scholar 

  71. Ostermeier GC, Goodrich RJ, Diamond MP, Dix DJ, Krawetz SA. Toward using stable spermatozoal RNAs for prognostic assessment of male factor fertility. Fertil Steril. 2005;83:1687–94.

    Article  PubMed  Google Scholar 

  72. Huser T, Orme CA, Hollars CW, Corzett MH, Balhorn R. Raman spectroscopy of DNA packaging in individual human sperm cells distinguishes normal from abnormal cells. J Biophotonics. 2009;2:322–32.

    Article  CAS  PubMed  Google Scholar 

  73. Goodsaid FM, Mendrick DL. Translational medicine and the value of biomarker qualification. Sci Transl Med. 2010;2:47ps4.

    Article  Google Scholar 

  74. Visconti PE, Stewart-Savage J, Blasco A, Battaglia L, Miranda P, Kopf GS, Tezon JG. Roles of bicarbonate, cAMP, and protein tyrosine phosphorylation on capacitation and the spontaneous reaction of hamster sperm. Biol Reprod. 1999;61:76–84.

    Article  CAS  PubMed  Google Scholar 

  75. McPartlin LA, Littell J, Mark E, Nelson JL, Travis AJ, Bedford-Guaus SJ. A defined medium supports changes consistent with capacitation in stallion sperm, as evidenced by increases in protein tyrosine phosphorylation and high rates of acrosomal exocytosis. Theriogenology. 2008;69:639–50.

    Article  CAS  PubMed  Google Scholar 

  76. Selvaraj V, Buttke D, Atsushi A, Nelson J, Klaus A, Hunnicutt G, et al. GM1 dynamics indicate membrane changes associated with capacitation in murine spermatozoa. Biol Reprod. 2007;77:166.

    Google Scholar 

  77. Travis AJ, Tutuncu L, Jorgez CJ, Ord TS, Jones BH, Kopf GS, et al. Requirements for glucose beyond sperm capacitation during in vitro fertilization in the mouse. Biol Reprod. 2004;71:139–45.

    Article  CAS  PubMed  Google Scholar 

  78. Travis AJ, Merdiushev T, Vargas LA, Jones BH, Purdon MA, Nipper RW, et al. Expression and localization of caveolin-1, and the presence of membrane rafts, in mouse and Guinea pig spermatozoa. Dev Biol. 2001;240:599–610.

    Article  CAS  PubMed  Google Scholar 

  79. Selvaraj V, Asano A, Buttke DE, Sengupta P, Weiss RS, Travis AJ. Mechanisms underlying the micron-scale segregation of sterols and G(M1) in live mammalian sperm. J Cell Physiol. 2009;218:522–36.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Neri QV, Husserl PJ, Vairo L, Rosenwaks Z, Travis AJ, Palermo GD. Testing the effect of cryopreservation on a biomarker-based assay of sperm function: toward generating a standard for semen samples with known fertility. Fertil Steril. 2013;100:S451.

    Article  Google Scholar 

  81. Vairo L, Neri QV, Rosenwaks Z, Schlegel PN, Travis AJ, Palermo GD. A novel, biomarker-based assay to screen for dysfunctional spermatozoa. Fertil Steril. 2013;100:S224–5.

    Article  Google Scholar 

  82. Cruz M, Gadea B, Garrido N, Pedersen KS, Martinez M, Perez-Cano I, et al. Embryo quality, blastocyst and ongoing pregnancy rates in oocyte donation patients whose embryos were monitored by time-lapse imaging. J Assist Reprod Genet. 2011;28:569–73.

    Article  PubMed Central  PubMed  Google Scholar 

  83. Levine BA, Feinstein J, Neri QV, Goldschlag D, Belongie S, Rosenwaks Z, et al. 3D sperm surface reconstruction, a novel three-dimensional approach to assessing sperm morphology. Fertil Steril. 2015;in press.

    Google Scholar 

Download references

Acknowledgments

We thank the clinicians, embryologists, andrologists, and scientists of The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Urology Department, Weill Cornell Medical College. We are grateful to Theodore Paniza and Laura Park for their assistance in the laboratory work and to Dr. Brian Levine for generating a 3D model of the spermatozoon.

Conflict of Interest The authors disclose no conflict.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianpiero D. Palermo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Neri, Q.V., Cozzubbo, T., Cheung, S., Rosenwaks, Z., Palermo, G.D. (2015). Single Gamete Insemination Aiming at the Ideal Conceptus. In: Sills, E. (eds) Screening the Single Euploid Embryo. Springer, Cham. https://doi.org/10.1007/978-3-319-16892-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16892-0_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16891-3

  • Online ISBN: 978-3-319-16892-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics