Skip to main content

Evolution and Fate of Chemical Elements in the Earth’s Crust, Ocean, and Atmosphere

  • Chapter
Acoustic, Electromagnetic, Neutron Emissions from Fracture and Earthquakes

Abstract

The Earth’s composition and evolution are topics that give rise to unanswered questions. However, some of the main evidences involving geology, geophysics and climatic equilibrium of our planet seem to imply a possible common explanation. Recently, several data, coming from geochemistry and geomechanics, have emphasized how tectonic activity should have been strictly connected to the most important changes in the Earth’s Crust chemical composition over the last 4.5 Billion years. At the same time, significant measurements of neutron emissions are observed at the Earth’s Crust scale during and before earthquakes. On the other hand, at the laboratory scale, original experiments performed on non-radioactive rocks under mechanical compression loading, have recently shown repeatable neutron emissions in correspondence to micro- and macro-fracture. After these experiments, a considerable reduction in the iron content appears to be consistently counterbalanced by an increase in Al, Si, and Mg contents. On these bases, the hypothesis of a new kind of nuclear reactions finds confirmations and could be considered as a valid explanation for the geologic evolution of the Earth’s Crust, Ocean, and Atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kolb E (2000) Blind watchers of the sky: the people and ideas that shaped our view of the universe. Oxford University Press, Oxford

    Google Scholar 

  2. Favero G, Jobstraibizer P (1996) The distribution of aluminum in the Earth: from cosmogenesis to Sial evolution. Coord Chem Rev 149:367–400

    Article  Google Scholar 

  3. Taylor SR, McLennan SM (2009) Planetary Crusts: their composition, origin and evolution. Cambridge University Press, Cambridge

    Google Scholar 

  4. Hawkesworth CJ, Kemp AIS (2006) Evolution of the continental crust. Nature 443:811–817

    Article  Google Scholar 

  5. Canfiled DE (1998) A new model for Proterozoic ocean chemistry. Nature 396:450–453

    Article  Google Scholar 

  6. Anbar AD (2008) Elements and evolution. Science 322:1481–1482

    Article  Google Scholar 

  7. Doglioni C (2007) Interno della Terra, Treccani, Enciclopedia Scienza e Tecnica, 595–605

    Google Scholar 

  8. Holland HD (2006) The oxygenation of the atmosphere and oceans. Philos Trans R Soc Lond Ser B 361:903–915

    Article  Google Scholar 

  9. Kump LR, Barley ME (2007) Increased subaerial volcanism and the rise of atmospheric oxygen 2.5 Billion years ago. Nature 448:1033–1036

    Article  Google Scholar 

  10. Buesseler KO et al (2008) Ocean iron fertilization moving forward in a sea of uncertainty. Science 319:162

    Article  Google Scholar 

  11. Saito MA (2009) Less nickel for more oxygen. Nature 458:714–715

    Article  Google Scholar 

  12. Konhauser KO et al (2009) Oceanic nickel depletion and a methanogen famine before the Great Oxidation Event. Nature 458:750–754

    Article  Google Scholar 

  13. Rudnick RL, Fountain DM (1995) Nature and composition of the continental crust: a lower crustal perspective. Rev Geophys 33(3):267–309

    Article  Google Scholar 

  14. Yaroshevsky AA (2006) Abundances of chemical elements in the Earth’s crust. Geochem Int 44(1):54–62

    Article  Google Scholar 

  15. Kuzhevskij BM, Yu. Nechaev O, Sigaeva EA, Zakharov VA (2003) Neutron flux variations near the Earth’s Crust. A possible tectonic activity detection. Nat Hazards Earth Syst Sci 3:637–645

    Article  Google Scholar 

  16. Kuzhevskij BM, Nechaev OY, Sigaeva EA (2003) Distribution of neutrons near the Earth’s surface. Nat Hazards Earth Syst Sci 3:255–262

    Article  Google Scholar 

  17. Antonova VP, Volodichev NN, Kryukov SV, Chubenko AP, Shchepetov AL (2009) Results of detecting thermal neutrons at Tien Shan High Altitude Station. Geomagn Aeron 49:761–767

    Article  Google Scholar 

  18. Volodichev NN, Kuzhevskij BM, Nechaev OY, Panasyuk MI, Podorolsky AN, Shavrin PI (2000) Sun-Moon-Earth connections: the neutron intensity splashes and seismic activity. Astron Vestn 34(2):188–190

    Google Scholar 

  19. Sigaeva E et al (2006) Thermal neutrons’observations before the Sumatra earthquake. Geophys Res Abstr 8:00435

    Google Scholar 

  20. Padron E et al (2008) Changes in the diffuse CO2 emission and relation to seismic activity in and around El Hierro, Canary Islands. Pure Appl Geophys 165:95–114

    Article  Google Scholar 

  21. Kelemen PB (2009) The origin of the land under the sea. Sci Am 300(2):42–47

    Article  Google Scholar 

  22. Hazen RM et al (2008) Mineral evolution. Am Mineral 93:1693–1720

    Article  Google Scholar 

  23. Lunine EJI (1998) Earth: evolution of a habitable world. Cambridge University Press, Cambridge/New York/Melbourne

    Book  Google Scholar 

  24. Roy I, Sarkar BC, Chattopadhyay A (2001) MINFO-a prototype mineral information database for iron ore resources of India. Comput Geosci 27:357–361

    Article  Google Scholar 

  25. World Mineral Resources Map. Available at http://www.mapsofworld.com/world-mineral-map.htm. Last accessed Oct 2009

  26. Key Iron Deposits of the World. Available at http://www.portergeo.com.au/tours/iron2002/-iron2002depm2b.asp. Last accessed Oct 2009

  27. Sigman D, Jaccard S, Haug F (2004) Polar ocean stratification in a cold climate. Nature 428:59–63

    Article  Google Scholar 

  28. Egami F (1975) Minor elements and evolution. J Mol Evol 4(2):113–120

    Article  Google Scholar 

  29. National Academy of Sciences (1975) Medical and biological effects of environmental pollutants: nickel. Proc. Natl Acad Sci, Washington, DC

    Google Scholar 

  30. Foing B (2005) Earth’s childhood attic. Astrobiol Mag. http://link.springer.com/article/10.1007%2FBF01732017#

  31. Carpinteri A, Lacidogna G, Manuello A, Borla O (2010) Piezonuclear transmutations in brittle rocks under mechanical loading: microchemical analysis and geological confirmations. In: Kounadis AN, Gdoutos EE (eds) Recent advances in mechanics. Springer, Chennai, pp 361–382

    Google Scholar 

  32. CarpinteriA, Lacidogna G, Manuello A, Borla O (2010) Piezonuclear transmutations in brittle rocks under mechanical loading: microchemical analysis and geological confirmations. In Recent advances in mechanics. Dedicated to the Late Professor P.S. Theocaris, Springer, Chennai, pp 361–382

    Google Scholar 

  33. Carpinteri A, Borla O, Lacidogna G, Manuello A (2010) Neutron emissions in brittle rocks during compression tests: monotic vs. cyclic loading. Phys Mesomech 13:264–274

    Article  Google Scholar 

  34. Carpinteri A, Chiodoni A, Manuello A, Sandrone R (2011) Compositional and microchemical evidence of piezonuclear fission reactions in rock specimens subjected to compression tests. Strain 47:267–281

    Article  Google Scholar 

  35. Carpinteri A, Lacidogna G, Manuello A, Borla O (2011) Energy emissions from brittle fracture: neutron measurements and geological evidences of piezonuclear reactions. Strength Fract Complex 7:13–31

    Google Scholar 

  36. Carpinteri A, Lacidogna G, Borla O, Manuello A, Niccolini G (2012) Electromagnetic and neutron emissions from brittle rocks failure: experimental evidence and geological implications. Sadhana 37:59–78

    Article  Google Scholar 

  37. Carpinteri A, Lacidogna G, Manuello A, Borla O (2012) Piezonuclear fission reactions: evidences from microchemical analysis, neutron emission, and geological transformation. Rock Mech Rock Eng 45:445–459

    Article  Google Scholar 

  38. Carpinteri A, Lacidogna G, Manuello A, Borla O (2013) Piezonuclear fission reactions from earthquakes and brittle rocks failure: evidence of neutron emission and nonradioactive product elements. Exp Mech 53(3):345–365

    Article  Google Scholar 

  39. Carpinteri A, Manuello A (2012) An indirect evidence of piezonuclear fission reactions: geomechanical and geochemical evolution in the Earth’s Crust. Phys Mesomech 15:14–23

    Article  Google Scholar 

  40. Carpinteri A, Borla O, Lacidogna G, Manuello A (2012) Piezonuclear reactions produced by brittle fracture: from laboratory to planetary scale. In: Proceedings of the 19th European conference of fracture, Kazan

    Google Scholar 

  41. Diebner K (1962) Fusionsprozesse mit Hilfe konvergenter Stosswellen – einige aeltere und neuere Versuche und Ueberlegungen. Kerntechnik 3:89–93

    Google Scholar 

  42. Kaliski S (1976) Critical masses of mini-explosion in fission–fusion hybrid systems. J Tech Phys 17:99–108

    Google Scholar 

  43. Winterberg F (1984) Autocatalytic fusion–fission implosions. Atom-Kerntech 44:146

    Google Scholar 

  44. Derjaguin BV et al (1989) Titanium fracture yields neutrons? Nature 34:492

    Article  Google Scholar 

  45. Preparata G (1991) A new look at solid-state fractures, particle emissions and “cold” nuclear fusion. Il Nuovo Cimento 104 A:1259–1263

    Google Scholar 

  46. Fujii MF et al (2002) Neutron emission from fracture of piezoelectric materials in deuterium atmosphere. Jpn J Appl Phys 41(Pt.1):2115–2119

    Article  Google Scholar 

  47. Carpinteri A (1989) Cusp catastrophe interpretation of fracture instability. J Mech Phys Solids 37:567–582

    Article  MATH  Google Scholar 

  48. Carpinteri A, Cardone F, Lacidogna G (2009) Piezonuclear neutrons from brittle fracture: early results of mechanical compression tests. Strain 45:332–339. Presented at the Turin Academy of Sciences on 10 Dec 2008. Proc Turin Acad Sci 33:27–42

    Google Scholar 

  49. Cardone F, Carpinteri A, Lacidogna G (2009) Piezonuclear neutrons from fracturing of inert solids. Phys Lett A 373:4158–4163

    Article  Google Scholar 

  50. Cardone F, Cherubini G, Petrucci A (2009) Piezonuclear neutrons. Phys Lett A 373(8–9):862–866

    Article  Google Scholar 

  51. Manuello A, Sandrone R, Guastella S, Borla O, Lacidogna G, Carpinteri A (2012) Piezonuclear reactions during mechanical tests of basalt and magnetite. In: Proceedings of the 19th European conference of fracture, Kazan

    Google Scholar 

  52. Lacidogna G, Borla O, Carpinteri A (2012) X-ray Photoelectron Spectroscopy on fracture surfaces of Carrara marble specimens crushed in compression. In: Proceedings of the 19th European conference of fracture, Kazan

    Google Scholar 

  53. Liu L (2004) The inception of the oceans and CO2-athmosphere in the early history of the Earth. Earth Planet Sci Lett 227:179–184

    Article  Google Scholar 

  54. Catling CD, Zahnle KJ (2009) The planetary air leak. Sci Am 300(5):24–31

    Article  Google Scholar 

  55. Aki K (1983) Strong motion seismology. In: Kanamori H, Boschi E (eds) Earthquakes: observation, theory and interpretation. North Holland Pub. Co, Amsterdam, pp 223–250

    Google Scholar 

  56. Altwegg K et al (2014) 67P/Churyumov-Gerasimenko, a Jupiter family comet with a high D/H ratio. Science. doi:10.1126/science.1261952

    Google Scholar 

  57. Knauth P (1998) Salinity history of the Earth’s early ocean. Nature 395:554–555

    Article  Google Scholar 

Download references

Acknowledgments

The authors have not been financially supported by any specific grant or agency for this research. However, they would like to anticipatedly acknowledge any form of support to further future studies in the same directions. Special thanks are due to Prof. R. Sandrone of the Environmental Engineering, Land and Infrastructures Department (Politecnico di Torino) and Dr. A. Chiodoni of the Italian Institute of Technology (IIT) for their extensive collaboration in the EDS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Carpinteri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Carpinteri, A., Manuello, A. (2015). Evolution and Fate of Chemical Elements in the Earth’s Crust, Ocean, and Atmosphere. In: Carpinteri, A., Lacidogna, G., Manuello, A. (eds) Acoustic, Electromagnetic, Neutron Emissions from Fracture and Earthquakes. Springer, Cham. https://doi.org/10.1007/978-3-319-16955-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16955-2_12

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16954-5

  • Online ISBN: 978-3-319-16955-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics