Skip to main content

Role of Chemokines in Shaping Macrophage Activity in AMD

  • Conference paper
  • First Online:
Retinal Degenerative Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 854))

Abstract

Age-related macular degeneration (AMD) is a multifactorial disorder that affects millions of individuals worldwide. While the advent of anti-VEGF therapy has allowed for effective treatment of neovascular ‘wet’ AMD, no treatments are available to mitigate the more prevalent ‘dry’ forms of the disease. A role for inflammatory processes in the progression of AMD has emerged over a period of many years, particularly the characterisation of leukocyte infiltrates in AMD-affected eyes, as well as in animal models. This review focuses on the burgeoning understanding of chemokines in the retina, and their potential role in shaping the recruitment and activation of macrophages in AMD. Understanding the mechanisms which promote macrophage activity in the degenerating retina may be key to controlling the potentially devastating consequences of inflammation in diseases such as AMD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ambati J, Ambati BK, Yoo SH et al (2003a) Age-related macular degeneration: etiology, pathogenesis, and therapeutic strategies. Surv Ophthalmol 48:257–293

    Article  PubMed  Google Scholar 

  • Ambati J, Anand A, Fernandez S et al (2003b) An animal model of age-related macular degeneration in senescent Ccl-2- or Ccr-2-deficient mice. Nat Med 9:1390–1397

    Article  CAS  PubMed  Google Scholar 

  • Bajetto A, Bonavia R, Barbero S et al (2002) Characterization of chemokines and their receptors in the central nervous system: physiopathological implications. J Neurochem 82:1311–1329

    Article  CAS  PubMed  Google Scholar 

  • Cherepanoff S, McMenamin P, Gillies MC et al (2009) Bruch’s membrane and choroidal macrophages in early and advanced age-related macular degeneration. Br J Ophthalmol 94:918–925

    Article  PubMed  Google Scholar 

  • Combadiere C, Feumi C, Raoul W et al (2007) CX3CR1-dependent subretinal microglia cell accumulation is associated with cardinal features of age-related macular degeneration. J Clin Invest 117:2920–2928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crane IJ, Liversidge J (2008) Mechanisms of leukocyte migration across the blood-retina barrier. Semin Immunopathol 30:165–177

    Article  PubMed  PubMed Central  Google Scholar 

  • Dickson DW (1986) Multinucleated giant cells in acquired immunodeficiency syndrome encephalopathy. Origin from endogenous microglia? Arch Pathol Lab Med 110:967–968

    CAS  PubMed  Google Scholar 

  • Fong AM, Robinson LA, Steeber DA et al (1998) Fractalkine and CX3CR1 mediate a novel mechanism of leukocyte capture, firm adhesion, and activation under physiologic flow. J Exp Med 188:1413–1419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forrester JV (2003) Macrophages eyed in macular degeneration. Nat Med 9:1350–1351

    Article  CAS  PubMed  Google Scholar 

  • Gehrs KM, Heriot WJ, de Juan E, Jr. (1992) Transmission electron microscopic study of a subretinal choroidal neovascular membrane due to age-related macular degeneration. Arch Ophthalmol 110:833–837

    Article  CAS  PubMed  Google Scholar 

  • Green WR, Key SN, 3rd (1977) Senile macular degeneration: a histopathologic study. Trans Am Ophthalmol Soc 75:180–254

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta N, Brown KE, Milam AH (2003) Activated microglia in human retinitis pigmentosa, late-onset retinal degeneration, and age-related macular degeneration. Exp Eye Res 76:463–471

    Article  CAS  PubMed  Google Scholar 

  • Hegner CA (1916) Retinitis exsudativa bei Lymphogranulomatosis. Klin Monatsbl Augenheil 57:27–48

    Google Scholar 

  • Jonas JB, Tao Y, Neumaier M et al (2010) Monocyte chemoattractant protein 1, intercellular adhesion molecule 1, and vascular cell adhesion molecule 1 in exudative age-related macular degeneration. Arch Ophthalmol 128:1281–1286

    Article  CAS  PubMed  Google Scholar 

  • Kramer M, Hasanreisoglu M, Feldman A et al (2012) Monocyte chemoattractant protein-1 in the aqueous humor of patients with age-related macular degeneration. Clin Experiment Ophthalmol 40(6):617–25

    Google Scholar 

  • Loetscher P, Moser B, Baggiolini M (2000) Chemokines and their receptors in lymphocyte traffic and HIV infection. Adv Immunol 74:127–180

    Article  CAS  PubMed  Google Scholar 

  • Lopez PF, Grossniklaus HE, Lambert HM et al (1991) Pathologic features of surgically excised subretinal neovascular membranes in age-related macular degeneration. Am J Ophthalmol 112:647–656

    Article  CAS  PubMed  Google Scholar 

  • Luhmann UF, Robbie S, Munro PM et al (2009) The drusenlike phenotype in aging Ccl2-knockout mice is caused by an accelerated accumulation of swollen autofluorescent subretinal macrophages. Invest Ophthalmol Vis Sci 50:5934–5943

    Article  PubMed  PubMed Central  Google Scholar 

  • Luster AD (1998) Chemokines–chemotactic cytokines that mediate inflammation. N Engl J Med 338:436–445

    Article  CAS  PubMed  Google Scholar 

  • Marc RE, Jones BW, Watt CB et al (2008) Extreme retinal remodeling triggered by light damage: implications for age related macular degeneration. Mol Vis 14:782–806

    PubMed  PubMed Central  Google Scholar 

  • Matsushima K, Larsen CG, DuBois GC et al (1989) Purification and characterization of a novel monocyte chemotactic and activating factor produced by a human myelomonocytic cell line. J Exp Med 169:1485–1490

    Article  CAS  PubMed  Google Scholar 

  • Moser B, Loetscher P (2001) Lymphocyte traffic control by chemokines. Nat Immunol 2:123–128

    Article  CAS  PubMed  Google Scholar 

  • Murphy PM, Baggiolini M, Charo IF et al (2000) International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol Rev 52:145–176

    CAS  PubMed  Google Scholar 

  • Newman AM, Gallo NB, Hancox LS et al (2012) Systems-level analysis of age-related macular degeneration reveals global biomarkers and phenotype-specific functional networks. Genome Med 4:16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel M, Chan CC (2008) Immunopathological aspects of age-related macular degeneration. Semin Immunopathol 30:97–110

    Article  PubMed  PubMed Central  Google Scholar 

  • Paul LA (1927) Choroiditis exsudativa under dem bilde der scheibenformigen entartung dernetzhautmitte. Z Augenh 63:205–223

    Google Scholar 

  • Penfold P, Killingsworth M, Sarks S (1984) An ultrastructural study of the role of leucoytes and fibroblasts in the breakdown of Bruch’s membrane. Aust J Ophthalmol 12:23–31

    Article  CAS  PubMed  Google Scholar 

  • Penfold PL, Killingsworth MC, Sarks SH (1985) Senile macular degeneration: the involvement of immunocompetent cells. Graefes Arch Clin Exp Ophthalmol 223:69–76

    Article  CAS  PubMed  Google Scholar 

  • Penfold PL, Provis JM, Billson FA (1987) Age-related macular degeneration: ultrastructural studies of the relationship of leucocytes to angiogenesis. Graefes Arch Clin Exp Ophthalmol 225:70–76

    Article  CAS  PubMed  Google Scholar 

  • Penfold PL, Liew SC, Madigan MC et al (1997) Modulation of major histocompatibility complex class II expression in retinas with age-related macular degeneration. Invest Ophthalmol Vis Sci 38:2125–2133

    CAS  PubMed  Google Scholar 

  • Penfold PL, Madigan MC, Gillies MC et al (2001) Immunological and aetiological aspects of macular degeneration. Prog Ret Eye Res 20:385–414

    Article  CAS  Google Scholar 

  • Rutar M, Provis JM, Valter K (2010) Brief exposure to damaging light causes focal recruitment of macrophages, and long-term destabilization of photoreceptors in the albino rat retina. Curr Eye Res 35:631–643

    Article  CAS  PubMed  Google Scholar 

  • Rutar MV, Natoli RC, Provis JM (2012) Small interfering RNA-mediated suppression of Ccl2 in Muller cells attenuates microglial recruitment and photoreceptor death following retinal ­degeneration. J Neuroinflammation 9:221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sennlaub F, Auvynet C, Calippe B et al (2013) CCR2(+) monocytes infiltrate atrophic lesions in age-related macular disease and mediate photoreceptor degeneration in experimental subretinal inflammation in Cx3cr1 deficient mice. EMBO Mol Med 5:1775–1793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seregard S, Algvere PV, Berglin L (1994) Immunohistochemical characterization of surgically removed subfoveal fibrovascular membranes. Graefes Arch Clin Exp Ophthalmol 232:325–329

    Article  CAS  PubMed  Google Scholar 

  • Silverman MD, Zamora DO, Pan Y et al (2003) Constitutive and inflammatory mediator-regulated fractalkine expression in human ocular tissues and cultured cells. Invest Ophthalmol Vis Sci 44:1608–1615

    Article  PubMed  Google Scholar 

  • Tsutsumi C, Sonoda KH, Egashira K et al (2003) The critical role of ocular-infiltrating macrophages in the development of choroidal neovascularization. J Leukoc Biol 74:25–32

    Article  CAS  PubMed  Google Scholar 

  • Walz A, Peveri P, Aschauer H et al (1987) Purification and amino acid sequencing of NAF, a novel neutrophil-activating factor produced by monocytes. Biochem Biophys Res Commun 149:755–761

    Article  CAS  PubMed  Google Scholar 

  • Yoshimura T, Leonard EJ (1990) Identification of high affinity receptors for human monocyte chemoattractant protein-1 on human monocytes. J Immunol 145:292–297

    CAS  PubMed  Google Scholar 

  • Yoshimura T, Matsushima K, Oppenheim JJ et al (1987) Neutrophil chemotactic factor produced by lipopolysaccharide (LPS)-stimulated human blood mononuclear leukocytes: partial characterization and separation from interleukin 1 (IL 1). J Immunol 139:788–793

    CAS  PubMed  Google Scholar 

  • Yoshimura T, Robinson EA, Tanaka S et al (1989) Purification and amino acid analysis of two ­human glioma-derived monocyte chemoattractants. J Exp Med 169:1449–1459

    Article  CAS  PubMed  Google Scholar 

  • Zlotnik A, Yoshie O (2000) Chemokines: a new classification system and their role in immunity. Immunity 12:121–127

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matt Rutar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Rutar, M., Provis, J. (2016). Role of Chemokines in Shaping Macrophage Activity in AMD. In: Bowes Rickman, C., LaVail, M., Anderson, R., Grimm, C., Hollyfield, J., Ash, J. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 854. Springer, Cham. https://doi.org/10.1007/978-3-319-17121-0_2

Download citation

Publish with us

Policies and ethics