Skip to main content

QSAR/QSPR Methods

  • Chapter
  • First Online:
A Primer on QSAR/QSPR Modeling

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSMOLECULAR))

  • 1685 Accesses

Abstract

QSAR/QSPR analysis started with different classical approaches constituting the core concept of predictive modeling analysis in the context of structure–activity relationships. Such classical techniques have been based on various postulates and hypotheses. With the passage of time, various dimensional features have taken an important role in diagnosis of chemical information and thereby in the development of successful QSAR/QSPR models. Development of computer technology has provided an essential support for easy and accurate implementation of complex molecular modeling calculations and data generation. The present chapter provides an account of the classical QSAR/QSPR approaches along with glimpses of two- and three-dimensional QSAR/QSPR techniques. The impact of the usage of computer and computational chemistry techniques in the paradigm of QSAR/QSPR has also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Free SM, Wilson JW (1964) A mathematical contribution to structure-activity studies. J Med Chem 7:395–399

    Article  CAS  Google Scholar 

  2. Beasley JG, Purcell WP (1969) An example of successful prediction of cholinesterase inhibitory potency from regression analysis. Biochim Biophys Acta 178:175–176

    Article  CAS  Google Scholar 

  3. Purcell WP, Bass GE, Clayton JM (1973) Strategy of drug design: a guide to biological activity. Wiley, New York

    Google Scholar 

  4. Fujita T, Ban T (1971) Structure-activity study of phenethylamines as substrates of biosynthetic enzymes of sympathetic transmitters. J Med Chem 14:148–152

    Article  CAS  Google Scholar 

  5. Hammett LP (1935) Some relations between reaction rates and equilibrium constants. Chem Rev 17:125–136

    Article  CAS  Google Scholar 

  6. Hansch C, Fujita T (1964) ρ-σ-π Analysis. A method for the correlation of biological activity and chemical structure. J Am Chem Soc 86:1616–1626

    Article  CAS  Google Scholar 

  7. Kubinyi H (1993) QSAR: Hansch analysis and related approaches. In: Mannhold R, Krogsgaard-Larsen P, Timmerman H (eds) Methods and principles in medicinal chemistry. VCH, Weinheim

    Google Scholar 

  8. Balaban AT (1985) Applications of graph theory in chemistry. J Chem Inf Comput Sci 25:334–343

    Article  CAS  Google Scholar 

  9. Trinajstić N, Gutman I (2002) Mathematical Chemistry. Croat Chem Acta 75:329–356

    Google Scholar 

  10. Roy K (2004) Topological descriptors in drug design and modeling studies. Mol Diver 8:321–323

    Article  CAS  Google Scholar 

  11. Todeschini R, Consonn V (2009) Molecular descriptors for chemoinformatics. Wiley-VCH, New York

    Book  Google Scholar 

  12. Kier LB, Hall LH (1986) Molecular connectivity in structure-activity analysis. Wiley, New York

    Google Scholar 

  13. Basak SC, Gute BD, Grunwald GD (1997) Use of topostructural, topochemical, and geometric parameters in the prediction of vapor pressure: a hierarchical QSAR approach. J Chem Inf Comput Sci 37:651–655

    Article  CAS  Google Scholar 

  14. Stankevich IV, Skovortsova MI, Zefirov NS (1995) On a quantum chemical interpretation of molecular connectivity indices for conjugated hydrocarbons. J Mol Struct (Theochem) 342:173–179

    Article  CAS  Google Scholar 

  15. Gálvez J (1998) On a topological interpretation of electronic and vibrational molecular energies. J Mol Struct (Theochem) 429:255–264

    Article  Google Scholar 

  16. Mazzanti A, Casarini D (2012) Recent trends in conformational analysis. WIREs Comput Mol Sci 2:613–641

    Article  CAS  Google Scholar 

  17. Hendrickson JB (1961) Molecular geometry. I. Machine computation of the common rings. J Am Chem Soc 83:4537–4547

    Article  CAS  Google Scholar 

  18. Allinger NL (1977) Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms. J Am Chem Soc 99:8127–8134

    Article  CAS  Google Scholar 

  19. Petrenko R, Jaroszaw M (2010) Molecular dynamics. Encyclopedia of life sciences (ELS). Wiley, Chichester

    Google Scholar 

  20. Schrödinger E (1926) Quantisierung als Eigenwertproblem (Erste Mitteilung). Ann Phys 79:361–376

    Article  Google Scholar 

  21. Born M, Oppenheimer R (1927) Zur quantentheorie der molekeln. Ann Phys 389:457–484

    Article  Google Scholar 

  22. Hartree DR (1928) The wave mechanics of an atom with a non-Coulomb central field. I. Theory and methods. Proc Cambridge Philos Soc 24:89–110

    Article  CAS  Google Scholar 

  23. Fock V (1930) Näherungsmethode zur Lösung des Quantenmechanischen Mehrkörperproblems. Z Phys 61:126–148

    Article  Google Scholar 

  24. Jones RO, Gunnarsson O (1989) The density functional formalism, its applications and prospects. Rev Mod Phys 61:689–746

    Article  CAS  Google Scholar 

  25. Thiel W (2014) Semiempirical quantum–chemical methods. WIREs Comput Mol Sci 4:145–157

    Article  CAS  Google Scholar 

  26. Pople JA, Santry DP, Segal GA (1965) Approximate self consistent molecular orbital theory. I. Invariant procedures. J Chem Phys 43:S129–S135

    Article  CAS  Google Scholar 

  27. Cramer RD III, Patterson DE, Bunce JD (1988) Comparative molecular field analysis (CoMFA). I. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 110:5959–5967

    Article  CAS  Google Scholar 

  28. Norinder U (1998) Recent progress in CoMFA methodology and related techniques. In: Kubinyi H, Folkers G, Martin YC (eds) 3D QSAR in drug design—recent advances, vol 3. Kluwer Academic Publishers, New York, pp 24–39

    Google Scholar 

  29. Klebe G, Abraham U, Mietzner T (1994) Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J Med Chem 37:4130–4146

    Article  CAS  Google Scholar 

  30. Hopfinger AJ, Tokarski JS (1997) Three-dimensional quantitative structure-activity relationship analysis. In: Charifson PS (ed) Practical application of computer-aided drug design. Marcel Dekker Inc., New York, pp 105–164

    Google Scholar 

  31. Hahn M (1995) Receptor surface models. 1. Definition and construction. J Med Chem 38(12):2080–2090

    Article  CAS  Google Scholar 

  32. Verma J, Khedkar VM, Coutinho EC (2010) 3D-QSAR in drug design—a review. Curr Top Med Chem 10(1):95–115

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunal Roy .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Roy, K., Kar, S., Das, R.N. (2015). QSAR/QSPR Methods. In: A Primer on QSAR/QSPR Modeling. SpringerBriefs in Molecular Science. Springer, Cham. https://doi.org/10.1007/978-3-319-17281-1_3

Download citation

Publish with us

Policies and ethics