Skip to main content

Logarithmic Littlewood-Paley Decomposition and Applications to Orlicz Spaces

  • Conference paper
  • First Online:
Analysis and Geometry

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 127))

  • 983 Accesses

Abstract

This paper is devoted to the construction of a logarithmic Littlewood-Paley decomposition. The approach we adopted to carry out this construction is based on the notion introduced in (Bahouri, Trends Math pp 1–15 (2013), [3]) of being \(\log \)-oscillating with respect to a scale. The relevance of this theory is illustrated on several examples related to Orlicz spaces.

In memory of M. Salah Baouendi

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Where \(\widehat{u} \) denotes the Fourier transform of u defined by: \( \displaystyle \widehat{u }(\xi )= \int _{{\mathbb {R}}^{2N}}\, \mathrm{e}^{- i \, x \cdot \xi } \, u(x)\, dx\,\).

  2. 2.

    We recall that \( {\mathcal F}(\Theta (D)u) (\xi )= \Theta (\xi ) {\mathcal F}( u) (\xi )\), with \({\mathcal F}\) the Fourier transform.

  3. 3.

    Where obviously \( \xi =|\xi |\cdot \omega \), with \(\omega \in {\mathbb S}^{2N-1}\).

References

  1. S. Adachi, K. Tanaka, Trudinger Type Inequalities in \(\mathbb{R}^N\) and Their Best Exponents, in Proceedings of the American Mathematical Society, vol 128, pp. 2051–2057 (2000)

    Google Scholar 

  2. D.R. Adams, A sharp inequality of J. Moser for higher order derivatives. Ann. Math. 128, 385–398 (1988)

    Article  MATH  Google Scholar 

  3. H. Bahouri, On the elements involved in the lack of compactness in critical Sobolev embedding, concentration analysis and applications to PDE. Trends Math. pp. 1–15 (2013)

    Google Scholar 

  4. H. Bahouri, P. Gérard et al., C.-J. Xu, Espaces de Besov et estimations de Strichartz généralisées sur le groupe de Heisenberg. Journal d’Analyse Mathématique 82, 93–118 (2000)

    Google Scholar 

  5. H. Bahouri, A. Cohen, G. Koch, A general wavelet-based profile decomposition in the critical embedding of function spaces. Confluentes Mathematici 3, 387–411 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. H. Bahouri, J.-Y. Chemin, R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der mathematischen Wissenschaften (Springer, New York, 2011)

    Book  Google Scholar 

  7. H. Bahouri, M. Majdoub, N. Masmoudi, On the lack of compactness in the 2D critical Sobolev embedding. J. Funct. Anal. 260, 208–252 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. H. Bahouri, C. Fermanian, I. Gallagher, Refined inequalities on graded lie groups. Notes aux Comptes-Rendus de l’Académie des Sciences de Paris, Série 350(350), 393–397 (2012)

    MATH  Google Scholar 

  9. H. Bahouri, M. Majdoub, N. Masmoudi, Lack of compactness in the 2D critical Sobolev embedding, the general case. Journal de Mathématiques Pures et Appliquées 101, 415–457 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. H. Bahouri et al., I. Gallagher, Paraproduit sur le groupe de Heisenberg et applications. Revista Matematica Iberoamericana 17, 69–105 (2001)

    Google Scholar 

  11. H. Bahouri, G. Perelman, A Fourier approach to the profile decomposition in Orlicz spaces. Math. Res. Lett. 21, 1–22 (2014)

    Article  MathSciNet  Google Scholar 

  12. I. Ben Ayed, M.K. Zghal, Characterization of the lack of compactness of \(H^2_{rad}(\mathbb{R}^4)\) into the Orlicz space. Commun. Contemp. Math. 16, 1–25 (2014)

    Article  MathSciNet  Google Scholar 

  13. J.-M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Annales de l’École Normale Supérieure de Paris 14, 209–246 (1981)

    MathSciNet  MATH  Google Scholar 

  14. G. Bourdaud, La propriété de Fatou dans les espaces de Besov homogènes. Note aux Comptes Rendus Mathematique de l’Académie des Sciences 349, 837–840 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. H. Brézis, J.-M. Coron, Convergence of solutions of H-systems or how to blow bubbles. Arch. Ration. Mech. Anal. 89, 21–86 (1985)

    Article  MATH  Google Scholar 

  16. G. Furioli, C. Melzi, A. Veneruso, Littlewood-Paley decompositions and Besov spaces on Lie groups of polynomial growth. Mathematische Nachrichten 279, 1028–1040 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. I. Gallagher, Y. Sire, Besov algebras on Lie groups of polynomial growth. Stud. Math. 212, 119–139 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. P. Gérard, Description du défaut de compacité de l’injection de Sobolev. ESAIM Contrôle Optimal et Calcul des Variations 3, 213–233 (1998)

    Article  MATH  Google Scholar 

  19. S. Jaffard, Analysis of the lack of compactness in the critical Sobolev embeddings. J. Funct. Anal. 161, 384–396 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. S. Klainerman, I. Rodnianski, A geometric approach to the Littlewood-Paley theory. Geom. Funct. Anal. 16, 126–163 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. I. Revista Matematica Iberoamericana 1(1), 145–201 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  22. P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. II. Revista Matematica Iberoamericana 1(2), 45–121 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  23. J. Moser, A sharp form of an inequality of N. Trudinger. Indiana Univ. Math. J. 20, 1077–1092 (1971)

    Article  Google Scholar 

  24. M.-M. Rao, Z.-D. Ren, Applications of Orlicz spaces, Monographs and Textbooks in Pure and Applied Mathematics, vol. 250 (Marcel Dekker Inc, New York, 2002)

    Google Scholar 

  25. B. Ruf, A sharp Trudinger-Moser type inequality for unbounded domains in \(\mathbb{R}^2\). J Funct. Anal. 219, 340–367 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. B. Ruf, F. Sani, Sharp Adams-type inequalities in \(\mathbb{R}^n\). Trans. Am. Math. Soc. 365, 645–670 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. I. Schindler, K. Tintarev, An abstract version of the concentration compactness principle. Revista Mathematica Complutense 15, 417–436 (2002)

    MathSciNet  MATH  Google Scholar 

  28. H. Triebel, Theory of Function Spaces (Birkhäuser, Basel)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hajer Bahouri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Bahouri, H. (2015). Logarithmic Littlewood-Paley Decomposition and Applications to Orlicz Spaces. In: Baklouti, A., El Kacimi, A., Kallel, S., Mir, N. (eds) Analysis and Geometry. Springer Proceedings in Mathematics & Statistics, vol 127. Springer, Cham. https://doi.org/10.1007/978-3-319-17443-3_4

Download citation

Publish with us

Policies and ethics