Skip to main content

Cooling Samples

  • Chapter
  • First Online:
Experimental Innovations in Surface Science
  • 2311 Accesses

Abstract

Cooling single crystal samples in ultrahigh vacuum below 77 K was at one time considered to be technically difficult because of the perceived need for cooled radiation shields for the structure holding the crystal. Recently, excellent cooling properties have been achieved without a radiation shield using a number of refinements that have permitted rapid cooling to 6 K, control of temperature to 30–70 mK at 10 K, and measurements with absolute temperature errors of about 0.7 K at 10 K and 1.5 K at 100 K (Schlichting and Menzel in Rev Sci Instrum 64:2013, 1993).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Tabulated values for thermal conductivity are sapphire, 41.90 J/s km at 273 K; 100 HN Kapton, 0.10-0.35 J/s km at 276 K. Goodfellow Catalog (Goodfellow Metals, 1995), p. 433; p. 501. In addition reference [10] gives information and references on thermal conductivities as a function of temperature. Sapphire exhibits a greatly enhanced thermal conductivity at 80 K of 960 J/sKm.

References

  1. H. Schlichting, D. Menzel, Rev. Sci. Instrum. 64, 2013 (1993)

    Article  ADS  Google Scholar 

  2. Constant flow cryostat, Air Products, APD-Cryogenics, P.O. Box 2802, Allentown, PA 18105

    Google Scholar 

  3. H. Schlichting (private communication)

    Google Scholar 

  4. K. Wandelt, S. Daiser, R. Miranda, H.-J. Forth, J. Phys. E17, 22 (1984)

    ADS  Google Scholar 

  5. A. Winkler, M. Hausenblas, M. Leisch, K. Rendulic, Vacuum 40, 39 (1990)

    Article  Google Scholar 

  6. M. Milun, P. Pervan, T. Valla, P. Dukic, Rev. Sci. Instrum. 62, 3116 (1991)

    Article  ADS  Google Scholar 

  7. J. Yoshinobu, H. Ogasawara, M. Kawai, Surf. Sci. 360, 234 (1996)

    Article  ADS  Google Scholar 

  8. S. Masuda, Department of Chemistry, College of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153, Japan

    Google Scholar 

  9. A. Winkler, M. Hausenblas, M. Leisch, K.D. Rendulic, Vacuum 40, 39 (1990)

    Article  Google Scholar 

  10. C. Rusu, J.T. Yates Jr, J. Vac. Sci. Technol. A15, 436 (1997)

    Article  ADS  Google Scholar 

  11. D.J. Frankel, B. Fruhberger, R.H. Jackson, D.J. Dwyer, Rev. Sci. Instrum. 64, 2368 (1993)

    Article  ADS  Google Scholar 

  12. Model 0522, Gast Manufacturing Corp., P.O. Box 97, Benton Harbor, MI 49023-0097

    Google Scholar 

  13. P.G. Strupp, P.C. Stair, J. Vac. Sci. Technol. A9, 2410 (1991)

    Article  ADS  Google Scholar 

  14. Catalog No. 97-216. The springs are obtainable from Instrument Specialties Co., P.O. Box A, Delaware Water Gap, PA 18327. These springs make good mechanical and thermal contact and permit dimensional changes due to differing thermal expansion coefficients of the sapphire and the Cu-Be alloy

    Google Scholar 

  15. I.M. Vitomirov, C.M. Aldao, G.D. Waddill, J.H. Weaver, J. Vac. Sci. Technol. A8, 3368 (1990)

    Article  ADS  Google Scholar 

  16. E.E. Chaban, Y.J. Chabal, Rev. Sci. Instrum. 54, 1031 (1983)

    Article  ADS  Google Scholar 

  17. G.L. Fowler, J. Vac. Sci. Technol. A9, 360 (1991)

    Article  ADS  Google Scholar 

  18. A. Winkler, M. Hausenblas, M. Leisch, K.D. Rendulic, Vacuum 40, 39 (1990)

    Article  Google Scholar 

  19. Dr. R. David, Institut fur Grenzflächenforschung und Vakuumphysik, Forschungszentrum Jülich GmbH, Postfach 1913, D-52425 Jülich, Germany (private communication). See also R. David et al, Rev. of Sci. Instrum. 57, 2771 (1986)

    Google Scholar 

  20. Detailed procedures for the preparation and welding of Cu braid are presented in the literature. See G.L. Fowler, J. Vac. Sci. Technol. A5, 2976 (1987)

    Google Scholar 

  21. E.E. Chaban, R.H. Citrin, F. Sette, J. Vac. Sci. Technol. A6, 3018 (1988)

    Article  ADS  Google Scholar 

  22. V.K.F. Chia, D.K. Veirs, G.M. Rosenblatt, J. Vac. Sci. Technol. A7, 108 (1989)

    Article  ADS  Google Scholar 

  23. Cryomech GB-220: Cryomech, Inc., 1630 Erie Boulevard E., Syracuse, NY 13210

    Google Scholar 

  24. G.L. Fowler, J. Vac. Sci. Technol. A5, 2976 (1987)

    Article  ADS  Google Scholar 

  25. Dr. L.H. Dubois, DARPA/DSO, 3701 N. Fairfax Dr., Arlington, VA 22203-1714 (private communication)

    Google Scholar 

  26. J. Xu, H.J. Jansch, J.T. Yates Jr, J. Vac. Sci. Technol. A11, 726 (1993)

    Article  ADS  Google Scholar 

  27. Dr. X.-C. Guo, Department of Chemical Engineering, Stanford University, Stanford, CA 94305-5025 (private communication)

    Google Scholar 

  28. P. Feulner, private communication from thesis of Sarah Kossler, U. Munich

    Google Scholar 

  29. W. Lew, O. Lytken, J.A. Farmer, M.C. Crowe, C.T. Campbell, Rev. Sci. Instrum. 81, 024102 (2010)

    Article  ADS  Google Scholar 

  30. A.J. Gordon, R.A. Ford, The Chemist’s Companion (Wiley, New York, 1972), pp. 451–452

    Google Scholar 

  31. O. Sneh, S.M. George, J. Vac. Sci. Technol. A13, 493 (1995)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John T. Yates Jr. .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yates, J.T. (2015). Cooling Samples. In: Experimental Innovations in Surface Science. Springer, Cham. https://doi.org/10.1007/978-3-319-17668-0_35

Download citation

Publish with us

Policies and ethics