Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 705 Accesses

Abstract

The ability to directly detect gravitational waves will open a completely new branch of astronomy to view the Universe, one that is inaccessible to electromagnetic-based astronomy (Thorne, Gravitational Waves, 1995, [1]). The development of that capability has many technical challenges. Finding solutions to these challenges have called upon the research development of many different fields of science and engineering. The first devices for the direct detection of gravitational waves, known collectively as the resonant mass detectors, were being proposed and constructed from 1960, starting with the work of Weber (Phys Rev 117:306, 1960, [2]). Contemporary to this, the field of quantum optics was beginning, with the formalism work of Glauber (Phys Rev 131:2766–2788, 1963, [3]). The cross-over between these fields began from the foundation work in quantum-noise-limited measurement that was being driven by the gravitational-wave detection field (Sov Phys JETP 46:705–706, 1977; JETP Lett 27:276–280, 1978, [4, 5]), as resonant mass detectors developed with increasing sensitivity that approached quantum limits. The use of laser interferometers for gravitational-wave detection was first raised in 1962 by Gertsenshtein and Pustovoit (JETP 43:605–607, 1962, [6]). The first in-depth scientific study into the construction of these interferometric gravitational-wave detectors came in 1972 by Weiss (Q Prog Rep Res Lab Electron 105, 1972, [7]). However, it was soon realised that these instruments would be sensitivity-limited by the quantum nature of the laser light itself. This lead to the theoretical study of the use of quantum squeezed states for enhancing interferometric gravitational-wave detector sensitivity (Other quantum measurement schemes being developed include variational interferometer readout (Kimble et al., Phys Rev D 65:022002, 2002; Corbitt and Mavalvala, J Opt B Quantum Semiclass Opt 6:S675, 2004, [8, 9]), ‘speed-meter’ designs (Purdue and Chen, Phys Rev D 66:122004, 2002; de Vine et al., Phys Lett A 316:17–23, 2003; Chen, Phys Rev D 67:122004, 2003; Chen et al., General Relativ Gravity 43:671–694, 2011; Wade et al., Phys Rev D 86:062001, 2012, [1014]), which are acknowledge but not presented.). It is this quantum-optic enhancement scheme that is the focus of this thesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K.S. Thorne, Gravitational Waves (1995), arXiv:gr-qc/9506086v1

  2. J. Weber, Detection and generation of gravitational waves. Phys. Rev. 117, 306 (1960)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. R.J. Glauber, Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766–2788 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  4. V.B. Braginsky, Y.I. Vorontsov, F.Y. Khalili, Quantum singularities of a ponderomotive meter of electromagnetic energy. Sov. Phys. JETP 46, 705–706 (1977)

    ADS  Google Scholar 

  5. V.B. Braginsky, Y.I. Vorontsov, F.Y. Khalili, Optimal quantum measurements in detectors of gravitation radiation. JETP Lett. 27, 276–280 (1978)

    ADS  Google Scholar 

  6. M.E. Gertsenshtein, V.I. Pustovoit, On the detection of low frequency gravitational waves. JETP 43, 605–607 (1962)

    Google Scholar 

  7. R. Weiss, Electromagnetically coupled broad-band gravitational wave antenna. Q. Prog. Rep. Res. Lab. Electron. 105(54) (1972)

    Google Scholar 

  8. H.J. Kimble, Y. Levin, A.B. Matsko, K.S. Thorne, S.P. Vyatchanin, Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics. Phys. Rev. D 65, 022002 (2002)

    Article  ADS  Google Scholar 

  9. T. Corbitt, N. Mavalvala, Review: quantum noise in gravitational-wave interferometers. J. Opt. B Quantum Semiclass. Opt. 6(8), S675 (2004)

    Article  ADS  Google Scholar 

  10. P. Purdue, Y. Chen, Practical speed meter designs for quantum nondemolition gravitational-wave interferometers. Phys. Rev. D 66, 122004 (2002)

    Article  ADS  Google Scholar 

  11. G. de Vine, M. Gray, D.E. McClelland, Y. Chen, S. Whitcomb, Measurement of the frequency response of a bench-top quantum speed meter interferometer. Phys. Lett. A 316(1–2), 17–23 (2003)

    ADS  Google Scholar 

  12. Y. Chen, Sagnac interferometer as a speed-meter-type, quantum-nondemolition gravitational-wave detector. Phys. Rev. D 67, 122004 (2003)

    Article  ADS  Google Scholar 

  13. Y. Chen, S.L. Danilishin, F.Y. Khalili, H. Müller-Ebhardt, QND measurements for future gravitational-wave detectors. General Relativ. Gravity 43, 671–694 (2011)

    Article  ADS  MATH  Google Scholar 

  14. A.R. Wade, K. McKenzie, Y. Chen, D.A. Shaddock, J.H. Chow, D.E. McClelland, Polarization speed meter for gravitational-wave detection. Phys. Rev. D 86, 062001 (2012)

    Article  ADS  Google Scholar 

  15. C.M. Caves, Quantum-mechanical noise in an interferometer. Phys. Rev. D 23(8) (1981)

    Google Scholar 

  16. W.G. Unruh, Quantum Optics, Experimental Gravitation and Measurement Theory, ed. by P. Meystre, M.O. Scully (Plenum, New York, 1983), p. 64

    Google Scholar 

  17. M.T. Jaekel, S. Reynaud, Quantum limits in interferometric measurements. EPL (Europhys. Lett.) 13(4), 301 (1990)

    Google Scholar 

  18. R. Slusher, L. Hollberg, B. Yurke, J. Mertz, J. Valley, Observation of squeezed states generated by four-wave mixing in an optical cavity. Phys. Rev. Lett. 55, 22 (1985)

    Article  Google Scholar 

  19. L.-A. Wu, H. Kimble, J. Hall, H. Wu, Generation of squeezed states by parametric down conversion. Phys. Rev. Lett. 57, 20 (1986)

    Google Scholar 

  20. P. Grangier, R. Slusher, B. Yurke, A. LaPorta, Squeezed-light-enhanced polarization interferometer. Phys. Rev. Lett. 59, 19 (1987)

    Article  Google Scholar 

  21. M. Xiao, L.-A. Wu, H. Kimble, Precision measurement beyond the shot-noise limit. Phys. Rev. Lett. 59, 3 (1987)

    Article  Google Scholar 

  22. E. Polzik, J. Carri, H. Kimble, Atomic spectroscopy with squeezed light for sensitivity beyond the vacuum-state limit. Appl. Phys. B 55, 279–290 (1992)

    Article  ADS  Google Scholar 

  23. G. Breitenbach, T. Müller, S. Pereira, J.-Ph. Poizat, S. Schiller, J. Mlynek, Squeezed vacuum from a monolithic optical parametric oscillator. J. Opt. Soc. Am. B 12, 11 (1995)

    Google Scholar 

  24. K. Schneider, R. Bruckmeier, H. Hansen, S. Schiller, J. Mlynek, Bright squeezed-light generation by a continuous-wave semimonolithic parametric amplifier. Opt. Lett. 21, 17 (1996)

    Google Scholar 

  25. K. Schneider, M. Lang, J. Mlynek, S. Schiller, Generation of strongly squeezed continuous-wave light at 1064 nm. Opt. Express 21, 3 (1998)

    Google Scholar 

  26. P.K. Lam, T. Ralph, D. McClelland, B. Buchler, H.-A. Bachor, J. Gao, Optimization and transfer of vacuum squeezing from an optical parametric oscillator. J. Opt. B. Quantum Semiclass Opt. 1, 469–474 (1999)

    Google Scholar 

  27. B.C. Buchler, Electro-optic control of quantum measurements. Ph.D. thesis, Physics Department, Australian National University, Canberra, Australia, 2008

    Google Scholar 

  28. W. Bowen, R. Schnabel, N. Treps, H.-A. Bachor, P.K. Lam, Recovery of continuous wave squeezing at low frequencies. J. Opt. B Quantum Semiclass Opt. 4, 421–424 (2002)

    Article  ADS  Google Scholar 

  29. R. Schnabel, H. Vahlbruch, A. Franzen, N. Grosse, S. Chelkowski, H.-A. Bachor, W.P. Bowen, P.K. Lam, K. Danzmann, Squeezed light at sideband frequencies below 100 kHz from a single OPA. Opt. Commun. 240, 185–190 (2004)

    Google Scholar 

  30. J. Laurat, T. Coudreau, G. Keller, N. Treps, C. Fabre, Compact source of Einstein-Podolsky-Rosen entanglement and squeezing at very low noise frequencies. Phys. Rev. A 70, 042315 (2004)

    Article  ADS  Google Scholar 

  31. K. McKenzie, N. Grosse, W. Bowen, S. Whitcomb, M. Gray, D. McClelland, P.K. Lam, Squeezing in the audio gravitational-wave detection band. Phys. Rev. Lett. 93(16), 161105 (2004)

    Article  ADS  Google Scholar 

  32. K. McKenzie, M. Gray, S. Goßler, P.K. Lam, D. McClelland, Squeezed state generation for interferometric gravitational-wave detection. Class. Quantum Gravity 23, S245S250 (2006)

    Google Scholar 

  33. H. Vahlbruch, S. Chelkowski, B. Hage, A. Franzen, K. Danzmann, R. Schnabel, Coherent control of vacuum squeezing in the gravitational-wave detection band. Phys. Rev. Lett. 97, 011101 (2006)

    Article  ADS  Google Scholar 

  34. S. Suzuki, H. Yonezawa, F. Kannaru, M. Sasaki, A. Furusawa, 7 dB quadrature squeezing at 860 nm with periodically poled KTiOPO\(_{4}\). Appl. Phys. Lett. 89, 061116 (2006)

    Article  ADS  Google Scholar 

  35. H. Vahlbruch, S. Chelkowski, K. Danzmann, R. Schnabel, Quantum engineering of squeezed states for quantum communication and metrology. New J. Phys. 9, 371 (2007)

    Article  ADS  Google Scholar 

  36. K. McKenzie, Squeezing in the audio gravitational wave detection band. Ph.D. thesis, Physics Department, Australian National University, Canberra, Australia, 2008

    Google Scholar 

  37. K. Goda, E. Mikhailov, O. Miyakawa, S. Saraf, S. Vass, A. Weinstein, N. Mavalvala7, Generation of a stable low-frequency squeezed vacuum field with periodically poled KTiOPO\(_{4}\) at 1064 nm. Opt. Lett. 33(2), 92 (2008)

    Google Scholar 

  38. Y. Takeno, M. Yukawa, H. Yonezawa, A. Furusawa, Observation of \(-\)9 dB quadrature squeezing with improvement of phase stability in homodyne measurement. Opt. Express 15, 7 (2007)

    Article  Google Scholar 

  39. H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Goßler, K. Danzmann, R. Schnabel, Observation of squeezed light with 10-dB quantum-noise reduction. Phys. Rev. Lett. 100, 033602 (2008)

    Article  ADS  Google Scholar 

  40. H. Yonezawa, K. Nagashima, A. Furusawa, Generation of squeezed light with a monolithic optical parametric oscillator: simultaneous achievement of phase matching and cavity resonance by temperature control. Opt. Exp. 18(19), 20143–20150 (2010)

    Google Scholar 

  41. H. Vahlbruch, Squeezed light for gravitational wave astronomy. Ph.D. thesis, Albert Einstein Institute and Leibniz University of Hannover, Hannover, Germany, 2008

    Google Scholar 

  42. H. Vahlbruch, A. Khalaidovski, N. Lastzka, C. Gräf, K. Danzmann, R. Schnabel, The GEO600 squeezed light source. Class. Quantum Gravity 27, 084027 (2010)

    Article  ADS  Google Scholar 

  43. M. Mehmet, H. Vahlbruch, N. Lastzka, K. Danzmann, R. Schnabel, Observation of squeezed states with strong photon-number oscillations. Phys. Rev. A 81, 013814 (2010)

    Google Scholar 

  44. T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, R. Schnabel, Quantum enhancement of the zero-area Sagnac interferometer topology for gravitational wave detection. Phys. Rev. Lett. 104, 251102 (2010)

    Article  ADS  Google Scholar 

  45. M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, R. Schnabel, Squeezed light at 1550nm with a quantum noise reduction of 12.3 dB. Opt. Express 19, 25 (2011)

    Google Scholar 

  46. A. Khalaidovski, H. Vahlbruch, N. Lastzka, C. Gräf, H. Lück, K. Danzmann, H. Grote, R. Schnabel, Status of the GEO600 squeezed-light laser (2011), arXiv:1112.0198v1

  47. S.S.Y. Chua, M. Stefszky, C. Mow-Lowry, B. Buchler, S. Dwyer, D. Shaddock, P.K. Lam, D. McClelland, Backscatter tolerant squeezed light source for advanced gravitational-wave detectors. Opt. Lett. 36(23), 4680 (2011)

    Article  ADS  Google Scholar 

  48. M. Stefszky, C. Mow-Lowry, S. Chua, D. Shaddock, B. Buchler, H. Vahlbruch, A. Khalaidovski, R. Schnabel, P.K. Lam, D. McClelland, Balanced homodyne detection of optical quantum states at audio-band frequencies and below. Class. Quantum Gravity 29, 145015 (2012)

    Article  ADS  Google Scholar 

  49. S. Chua, K. McKenzie, B.C. Buchler, D.E. McClelland, Impact of non-stationary events on low frequency homodyne detection. J. Phys. Conf. Ser. 122, 012023 (2008)

    Article  ADS  Google Scholar 

  50. K. McKenzie, D.A. Shaddock, D.E. McClelland, B.C. Buchler, P.K. Lam, Experimental demonstration of a squeezing-enhanced power-recycled Michelson interferometer for gravitational wave detection. Phys. Rev. Lett. 88(23), 231102 (2002)

    Google Scholar 

  51. H. Vahlbruch, S. Chelkowski, B. Hage, A. Franzen, K. Danzmann, R. Schnabel, Demonstration of a squeezed-light-enhanced power- and signal-recycled Michelson interferometer. Phys. Rev. Lett. 95, 211102 (2005)

    Article  ADS  Google Scholar 

  52. K. Goda, O. Miyakawa, E.E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A.J. Weinstein, N. Mavalvala, A quantum-enhanced prototype gravitational-wave detector. Nat. Phys. 4, 472–476 (2008)

    Article  Google Scholar 

  53. The LIGO Scientific Collaboration, A gravitational wave observatory operating beyond the quantum shot-noise limit. Nat. Phys. 7, 962–965 (2011)

    Google Scholar 

  54. M. Pitkin, S. Reid, S. Rowan, J. Hough, Gravitational wave detection by interferometry (ground and space). Living Rev. Relativ. 14(5) (2011)

    Google Scholar 

  55. D.F. Walls, G. Milburn, Quantum Optics, 2nd edn. (Springer, Berlin, 2008)

    Book  MATH  Google Scholar 

  56. A. Buonanno, Y. Chen, Quantum noise in second generation, signal-recycled laser interferometric gravitational-wave detectors. Phys. Rev. D 64, 042006 (2001)

    Article  ADS  Google Scholar 

  57. A. Buonanno, Y. Chen, Improving the sensitivity to gravitational-wave sources by modifying the input-output optics of advanced interferometers. Phys. Rev. D 69, 102004 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheon S. Y. Chua .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chua, S.S.Y. (2015). Introduction. In: Quantum Enhancement of a 4 km Laser Interferometer Gravitational-Wave Detector. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-17686-4_1

Download citation

Publish with us

Policies and ethics