Skip to main content

Coupling Biological and Physical Processes: The Ecological Significance of River Channel Hydraulics and Fluvial Dynamics

  • Chapter
  • First Online:
Rivers – Physical, Fluvial and Environmental Processes

Part of the book series: GeoPlanet: Earth and Planetary Sciences ((GEPS))

Abstract

This chapter focuses on how flow and associated geomorphic processes influence river and stream invertebrates. It stresses the importance of flows and fluvial dynamics across a range of scales, discussing how they influence individual organisms, populations and whole communities. It considers not just benthic larvae, but how flow and sedimentological conditions influence other life stages. Consideration is also given to how organisms influence habitat—so called ‘habitat engineering’. The chapter argues that a detailed understanding of species’ ecologies is needed if we are to understand precisely why they are affected by flow conditions and to allow us to manage rivers sustainably.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson CB, Rosemond AD (2007) Ecosystem engineering by invasive exotic beavers reduces in-stream diversity and enhances ecosystem function in Cape Horn, Chile. Oecologia 154:141–153

    Article  Google Scholar 

  • Barnes JB, Vaughan IP, Ormerod SJ (2013) Reappraising the effects of habitat structure on river macroinvertebrates. Freshw Biol 58:2154–2167

    Article  Google Scholar 

  • Blanckaert K, Garcia XF, Ricardo AM, Chen Q, Pusch MT (2013) The role of turbulence in the hydraulic environment of benthic macroinvertebrates. Ecohydrology 6:700–717

    Article  Google Scholar 

  • Brasington J (2010) From grain to floodplain: hyperscale models of braided rivers. J Hydraul Res 48(53 Suppl.):4

    Google Scholar 

  • Brittain JE, Eikeland TJ (1988) Invertebrate drift—a review. Hydrobiologia 166:77–93

    Article  Google Scholar 

  • Brooks AJ, Haeusler T, Reinfelds I, Williams S (2005) Hydraulic microhabitats and the distribution of macroinvertebrates in riffles. Freshw Biol 50:331–344

    Article  Google Scholar 

  • Buendia C, Gibbins CN, Vericat D, Batalla RJ (2013a) Reach and catchment scale influences on invertebrate assemblages in a river with naturally high fine sediment loads. Limnologia 42:362–370

    Article  Google Scholar 

  • Buendia C, Gibbins CN, Vericat D, Batalla RJ, Douglas A (2013b) Detecting the structural and functional impacts of fine sediment on stream invertebrates. Ecol Ind 25:184–196

    Article  Google Scholar 

  • Buendia C, Gibbins CN, Vericat D, Batalla RJ (2013c) Effects of flow and fine sediment dynamics on spatial and temporal turnover of stream invertebrate assemblages. Ecohydraulics. doi:10.1002/eco.1443

    Google Scholar 

  • Cameron SM, Nikora VI, Albayrak I, Miler O, Stewart S, Siniscalchi F (2013) Interactions between aquatic plants and turbulent flow: a field study using stereoscopic PIV. J Fluid Mech 732:345–372

    Article  Google Scholar 

  • Cummins K, Lauf J (1969) The influence of substrate particle size on the microdistribution of stream macrobenthos. Hydrobiologia 34:145–181

    Article  Google Scholar 

  • Ditsche-Kuru P, Koop JHE, Gorb SN (2010) New insights into a life in current: do the gill lamellae of Epeorus assimilis and Iron alpicola larvae function as friction or sucker pads? J Exp Biol 213:1950–1959

    Article  Google Scholar 

  • Dodelec S, Lamouroux N, Fushs U, Merigoux S (2007) Modelling the hydraulic preferences of benthic macroinvertebrates in small European streams. Freshw Biol 52:145–164

    Article  Google Scholar 

  • Downes B, Lake PS, Schreiber ESG, Glaister A (1998) Habitat structure and regulation of local species diversity in a stony, upland stream. Ecol Monogr 68:237–257

    Google Scholar 

  • Elliott JM (2003) A comparative study of the dispersal of 10 species of stream invertebrates. Freshw Biol 48:1652–1668

    Article  Google Scholar 

  • Encalada AC, Peckarsky BL (2006) Selective oviposition of the mayfly Baetis bicaudatus. Oecologia 148:526–537

    Article  Google Scholar 

  • Fuller MR, Peckarsky BL (2011) Ecosystem engineering by beavers affects mayfly life histories. Freshw Biol 56:969–979

    Article  Google Scholar 

  • Gibbins CN, Scott E, Soulsby C, McEwan I (2005) The relationship between sediment mobilisation and the entry of Baetis mayflies into the drift in a laboratory flume. Hydrobiologia 533:115–122

    Article  Google Scholar 

  • Gibbins CN, Batalla RJ, Vericat D (2007a) Shaking and moving: sediment movement triggers mass drift of invertebrates. Can J Fish Aquat Sci 64:1–5

    Article  Google Scholar 

  • Gibbins CN, Vericat D, Batalla RJ (2007b) When is stream invertebrate drift catastrophic? Freshw Biol 52:2369–2384

    Article  Google Scholar 

  • Gibbins CN, Batalla RJ, Vericat D (2010) Invertebrate drift and benthic exhaustion during disturbance: response of mayflies to increasing shear stress and river-bed instability. River Res Appl 26:499–510

    Article  Google Scholar 

  • Gurnell A (2013) Plants as river system engineers. Earth Surf Process Landf 39:4–25

    Article  Google Scholar 

  • Hammerson GA (1994) Beaver (Castor canadensis): ecosystem alterations, management, and monitoring. Nat Areas J 14:44–57

    Google Scholar 

  • Hart DD, Finelli CM (1999) Physical-biological coupling in streams: the pervasive effects of flow on benthic organisms. Annu Rev Ecol Syst 30:363–395

    Article  Google Scholar 

  • Harvey J, Alexander James Henshaw AJ, Moorhouse TP, Clifford N, Holah H, Grey J, Macdonald DW (2014). Invasive crayfish as drivers of fine sediment dynamics in rivers: field and laboratory evidence. Earth Surf Process Landf 39:259–271

    Google Scholar 

  • Hassan MA, Gottesfeld AS, Montgomery DR, Tunnicliffe JF, Clarke GKC, Wynn G, Jones-Cox H, Poirier R, MacIsaac E (2008) Salmon-driven bed load transport and bed morphology in mountain streams. Geophys Res Lett 35:LO4405

    Google Scholar 

  • Hu DL, Chan B, Bush JWM (2003) The hydrodynamics of water strider locomotion. Nature 424:663–666

    Article  Google Scholar 

  • Hynes HBN (1970) The ecology of running waters. University of Toronto Press, Canada

    Google Scholar 

  • Johnson ME, Reid I, Rice SJ, Wood P (2009) Stabilisation of fine gravels by net-spinning caddisfly larvae. Earth Surf Process Landf 34:413–423

    Article  Google Scholar 

  • Johnson ME, Rice SJ, Reid I (2011) Increase in coarse sediment transport associated with disturbance of gravel river beds by signal crayfish (Pacifastacus leniusculus). Earth Surf Process Landf 36:1680–1692

    Article  Google Scholar 

  • Lancaster J, Belyea LR (2006) Defining the limits to local density: alternative views of abundance-environment relationships. Freshw Biol 51:783–796

    Article  Google Scholar 

  • Lancaster J, Downes B (2010a) Lasting effects of maternal behaviour on the distribution of a quintessential disperser in an advection-dominated system. J Anim Ecol 163:373–384

    Google Scholar 

  • Lancaster J, Downes B (2010b) Linking the hydraulic world of individual organisms to ecological processes putting the ecology into ecohydraulics. River Res Appl 26:385–403

    Article  Google Scholar 

  • Lancaster J, Downes B (2013) Aquatic entomology. Oxford University Press, Oxford

    Google Scholar 

  • Lancaster J, Downes BJ (2014) Maternal behaviours may explain riffle-scale variations in some stream insect populations. Freshw Biol 59:502–513. doi:10.1111/fwb.12281

    Article  Google Scholar 

  • Lancaster J, Buffin-Bélanger T, Reid I, Rice S (2006) Flow- and substratum-mediated movement by a stream insect. Freshw Biol 51:1053–1069. doi:10.1111/j.1365-2427.2006.01554.x

    Article  Google Scholar 

  • Lancaster J, Downes B, Arnold A (2008) Environmental constraints on oviposition may limit density in a stream insect at multiple scales. Oecologia 163:373–384

    Article  Google Scholar 

  • Malmqvist B, Adler PH, Kuusela K, Merritt RW, Wotton RS (2004) Blackflies in the boral biome, key organisms in both terrestrial and aquatic environments: a review. Ecoscience 11:187–200

    Google Scholar 

  • McCoy ED, Bell SS (1991) Habitat structure: the evolution and classification of a complex topic. In: Bell SS, McCoy ED, Mushinsky HR (eds) Habitat structure: the physical arrangement of objects in space. Chapman Hall, London, pp 3–27

    Google Scholar 

  • Merigoux S, Dodelec S (2004) Hydraulic requirements of stream communities: a case study of invertebrates. Freshw Biol 49:600–613

    Article  Google Scholar 

  • Montgomery DR, Buffington JM (1997) Channel reach morphology in mountain drainage basins. Geol Soc Am Bull 109:596–611

    Article  Google Scholar 

  • Morin A, Back C, Chalifour A, Boisvert J, Peters RH (1988) Empirical models predicting ingestion rates of blackfly larvae. Can J Fish Aquat Sci 45:1711–1719

    Article  Google Scholar 

  • Orth DJ, Maughan OE (1983) Microhabitat preferences of benthic fauna in a woodland stream. Hydrobiologia 106:157–168

    Article  Google Scholar 

  • Peckarsky BL, Taylor BW, Caudill CC (2000) Hydrologic and behavioural constraints on oviposition of stream insects: implications for adult dispersal. Oecologia 125:186–200

    Article  Google Scholar 

  • Quinlan E, Gibbins CN, Malcolm IA, Batalla RJ, Vericat D, Hastie L (2014) A review of the physical habitat requirements and research priorities needed to underpin conservation of the endangered freshwater pearl mussel Margaritifera margaritifera. Aquat Conserv Mar Freshw Ecosyst. doi:10.10002/acq.2484

    Google Scholar 

  • Smith M, Vericat D, Gibbins CN (2012) Through-water terrestrial laser scanning of gravel beds at the plot scale. Earth Surf Process Landf 37:411–421

    Article  Google Scholar 

  • Stamhius EJ (2006) Basics and principles of particle image velocimetry (PIV) for mapping biogenic and biologically relevant flows. Aquat Ecol 40:463–479

    Article  Google Scholar 

  • Stanley E, Powers SM, Noah NR (2010) The evolving legacy of disturbance in stream ecology: concepts, contributions and coming challenges. J North Am Benthol Soc 29:67–83

    Article  Google Scholar 

  • Statzner B (2012) Geomorphological implications of engineering bed sediments by lotic animals. Geomorphology 157–158:49–65

    Article  Google Scholar 

  • Statzner B, Fuchs U, Higler LWG (1996) Sand erosion by mobile predaceous stream insects: implications for ecology and hydrology. Water Resour Res 32:2279–2287

    Google Scholar 

  • Statzner B, Holm TF (1989) Morphological adaptation of shape to flow: microcurrents around lotic macroinvertebrates with known reynolds numbers at quasi-natural flow conditions. Oecologia 78:145–157

    Article  Google Scholar 

  • Statzner B, Peltret O (2006) Assessing potential abiotic and biotic complications of crayfish-induced gravel transport in experimental streams. Geomorphology 74:245–256

    Article  Google Scholar 

  • Statzner B, Sagnes P (2008) Crayfish and fish as bioturbators of streambed sediments: assessing joint effects of species with different mechanistic abilities. Geomorphology 93:267–287

    Article  Google Scholar 

  • Statzner B, Dejoux C, Elouard J-M (1984) Field experiments on the relationship between drift and benthic densities of aquatic insects in a tropical stream (Ivory Coast) 1 introduction: review of drift literature, methods and experimental conditions. Rev Trop Hydrobiol 17:319–334

    Google Scholar 

  • Statzner B, Peltret O, Tomanova S (2003a) Crayfish as geomorphic agents and ecosystem engineers: effect of a biomass gradient on baseflow and flood-induced transport of gravel and sand in experimental streams. Freshw Biol 48:147–163

    Article  Google Scholar 

  • Statzner B, Sagnes P, Champagne J-Y, Viboud S (2003b) Contribution of benthic fish to the patch dynamics of gravel and sand transport in streams. Water Resour Res 39:1309–1325. doi:10.1029/2003WR002270

    Article  Google Scholar 

  • Steinman P (1907) Die Tierwelt der Gebirgsbäche. Eine faunistische-biologische Studie. Ann Biol Lacustre 2:30–150

    Google Scholar 

  • Thomas RE, Johnson MF, Frostick LE, Parsons DB, Boumac TJ, Dijkstrad JT, Eiffe O, Gobert S, Henry PE, Kemp P, Stuart J, Mclelland SJ, Frederic Y, Moulin FY, Myrhaugg D, Neytsg A, Pauli M, Ellis W, Puijalonj S, Rice SJ, Stanicak P, Tagliapietral D, Talm M, Tørumn A, Vousdoukasio MI (2014) Physical modelling of water, fauna and flora: knowledge gaps, avenues for future research and infrastructural needs. J Hydraul Res. doi:10.1080/00221686.2013.876453

    Google Scholar 

  • Vericat D, Brasington J, Cowie M, Wheaton J (2009) Accuracy assessment of aerial photographs acquired using lighter-than-air blimps: low-cost tools for mapping river corridors. River Res Appl 15:985–1000

    Article  Google Scholar 

  • Wise DH, Molles MC Jr (1979) Colonisation of artificial substrates by stream insects: influence of substrate size and diversity. Hydrobiologia 65:69–74

    Article  Google Scholar 

  • Wood PJ, Armitage PD (1997) Biological effects of fine sediment in the lotic environment. Environ Manage 21:203–217

    Article  Google Scholar 

  • Zanatell BA, Peckarsky BL (1996) Stoneflies as ecological engineers—hungry predators reduce fine sediments in stream beds. Freshw Biol 36:569–577

    Article  Google Scholar 

  • Zimmer RK, Fingerut JT, Zimmer CA (2009) Dispersal pathways, seed rains and the dynamics of larval behaviour. Ecology 90:1933–1947

    Article  Google Scholar 

Download references

Acknowledgments

I am indebted to the many collaborators I have been fortunate enough to work with. I would particularly like to thank Ramon Batalla, Cristina Buendia, Iain Malcolm and Damia Vericat.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Gibbins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gibbins, C. (2015). Coupling Biological and Physical Processes: The Ecological Significance of River Channel Hydraulics and Fluvial Dynamics. In: Rowiński, P., Radecki-Pawlik, A. (eds) Rivers – Physical, Fluvial and Environmental Processes. GeoPlanet: Earth and Planetary Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-17719-9_19

Download citation

Publish with us

Policies and ethics