Skip to main content

Polaroid operators and Weyl type theorems

  • Conference paper
Applied Mathematics in Tunisia

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 131))

  • 533 Accesses

Abstract

Weyl type theorems have been proved for a considerably large number of classes of operators. In this work, after introducing the class of polaroid operators and some notions from local spectral theory, we determine a theoretical and general framework from which Weyl type theorems may be promptly established for many of these classes of operators. The theory is exemplified by given several examples of hereditarily polaroid operators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Aiena: Fredholm and local spectral theory, with application to multipliers. Kluwer Acad. Publishers (2004).

    Google Scholar 

  2. P. Aiena: Classes of Operators Satisfying a-Weyl’s theorem. Studia Math. 169 (2005), 105–122.

    Article  MATH  MathSciNet  Google Scholar 

  3. P. Aiena:Quasi Fredholm operators and localized SVEP, (2006). Acta Sci. Math. (Szeged), 73 (2007), 251–263.

    Google Scholar 

  4. Aiena, Pietro: Algebraically paranormal operators on Banach spaces. Banach J. Math. Anal. 7 (2013), no. 2, 136–145.

    Article  MATH  MathSciNet  Google Scholar 

  5. P. Aiena, E. Aponte: Polaroid type operators under perturbations. Studia Math. 214, (2013), no. 2, 121–136.

    Article  MATH  MathSciNet  Google Scholar 

  6. P. Aiena, E. Aponte, E. Bazan: Weyl type theorems for left and right polaroid operators. Inte. Equa. Oper. Theory 66 (2010), no. 1, 1–20.

    Article  MATH  Google Scholar 

  7. P. Aiena, M. T. Biondi, C. Carpintero: On Drazin invertibility, Proc. Amer. Math. Soc. 136, (2008), 2839–2848.

    Article  MATH  MathSciNet  Google Scholar 

  8. P. Aiena, C. Carpintero, E. Rosas: Some characterization of operators satisfying a-Browder theorem. J. Math. Anal. Appl. 311, (2005), 530–544.

    Article  MATH  MathSciNet  Google Scholar 

  9. P. Aiena, M. Chō, M. González: Polaroid type operator under quasi-affinities. J. Math. Anal. Appl. 371 (2010), 485–495

    Article  MATH  MathSciNet  Google Scholar 

  10. P. Aiena, J. Guillen, P. Peña: A unifying approach to Weyl type theorems for Banach space operators. Integ. Equ. Oper. Theory 77 (2013), 371–384.

    Article  MATH  Google Scholar 

  11. P. Aiena, M. M. Neumann: On the stability of the localized single-valued extension property under commuting perturbations. Proc. Amer. Math. Soc. 141 (2013), no. 6, 2039–2050.

    Article  MATH  MathSciNet  Google Scholar 

  12. P. Aiena, P. Peña: A variation on Weyl’s theorem. J. Math. Anal. Appl. 324 (2006), 566–579.

    Article  MATH  MathSciNet  Google Scholar 

  13. P. Aiena, F. Villafãne: Weyl’s theorem for some classes of operators. Int. Equa. Oper. Theory 53, (2005), 453–466.

    Article  MATH  Google Scholar 

  14. A. Aluthge.: On p-hyponormal operators for 1 < p < 1, Integral Equations Operator Theory 13, (1990), 307–315.

    Article  MATH  MathSciNet  Google Scholar 

  15. M. Amouch, H. Zguitti: On the equivalence of Browder’s and generalized Browder’s theorem. Glasgow Math. Jour. 48, (2006), 179–185.

    Article  MATH  MathSciNet  Google Scholar 

  16. T. Ando: Operators with a norm condition, Acta Sci. Math. (Szeged) 33, (1972), 169–178.

    MATH  MathSciNet  Google Scholar 

  17. S. K. Berberian: An extension of Weyl’s theorem to a class of not necessarily normal operators. Michigan Math. J. 16 (1969),273–279.

    Article  MATH  MathSciNet  Google Scholar 

  18. M. Berkani: On a class of quasi-Fredholm operators. Integral Equations and Operator Theory 34 (1), (1999), 244–249.

    Article  MATH  MathSciNet  Google Scholar 

  19. M. Berkani: Index of B-Fredholm operators and generalization of a Weyl’s theorem, Proceding American Mathematical Society, vol. 130, 6, (2001), 1717–1723.

    Google Scholar 

  20. M. Berkani, M. Sarih: On semi B-Fredholm operators. Glasgow Mathematics Journal 43, No. 4, (2001), 457–465.

    MATH  MathSciNet  Google Scholar 

  21. M. Berkani, M. Amouch: On the property (gw). Mediterr. J. Math. 5 (2008), no. 3, 371–378.

    Article  MATH  MathSciNet  Google Scholar 

  22. M. Berkani, J. J. Koliha: Weyl type theorems for bounded linear operators, Acta Sci. Math. (Szeged) 69 (2003), no. 1–2, 359–376.

    MATH  MathSciNet  Google Scholar 

  23. M. Berkani, M. Sarih: On semi B-Fredholm operators, Glasgow Math. J. 43 (2001), 457–465.

    Article  MATH  MathSciNet  Google Scholar 

  24. X. Cao, M. Guo, B. Meng: Weyl’s theorem for upper triangular operator matrices. Linear Alg. and Appl. 402 (2005), 61–73.

    Article  MATH  MathSciNet  Google Scholar 

  25. M. Chō, I. H. Jeon, J. I. Lee: Spectral and structural properties of log-hyponormal operators Glasgow Math. J. 42 (2000), 345–350.

    MATH  Google Scholar 

  26. L.A. Coburn: Weyl’s theorem for nonnormal operators. Research Notes in Mathematics 51, (1981).

    Google Scholar 

  27. J. B. Conway: Subnormal operators Michigan Math. J. 20 (1970), 529–544.

    Google Scholar 

  28. S.V. Djordjevíc, H. Zguitti: Essential point spectra of operator matrices trough local spectral theory, J. Math. Anal. and Appl. 338 (2008), 285–291.

    Article  MATH  MathSciNet  Google Scholar 

  29. B. P. Duggal: Quasi-similar p-hyponormal operators. Integ. Equ. Oper. theory 26, (1996), 338–345.

    Article  MATH  MathSciNet  Google Scholar 

  30. B.P. Duggal: Polaroid operators satisfying Weyl’s theorem. Linear Algebra Appl. 414 (2006), 271–277.

    Article  MATH  MathSciNet  Google Scholar 

  31. B.P. Duggal: Hereditarily polaroid operators, SVEP and Weyl’s theorem. J. Math. Anal. Appl. 340 (2008), 366–373.

    Article  MATH  MathSciNet  Google Scholar 

  32. B.P. Duggal, S.V. Djordjevíc: Generalized Weyl’s theorem for a class of operators satisfying a norm condition. Math. Proc. Royal Irish Acad. 104A, (2004), 75–81.

    Google Scholar 

  33. B. P. Duggal, H. Jeon: Remarks on spectral properties of p-hyponormal and log-hyponormal operators. Bull. Kor. Math. Soc. 42, (2005), 541–552.

    Google Scholar 

  34. B.P. Duggal, R. E. Harte, I. H. Jeon: Polaroid operators and Weyl’s theorem. Proc. Amer. Math. Soc. 132 (2004), 1345–1349.

    Article  MATH  MathSciNet  Google Scholar 

  35. B. P. Duggal, I. H. Jeon¡. On p-quasi-hyponormal operators. Linear Alg. and Appl. 422, (2007), 331–340.

    Google Scholar 

  36. B. P. Duggal, I. H. Jeon, I H. Kim: On Weyl’s theorem for quasi-class A operators. J. Korean Math. Soc. 43, (2006), N. 4, 899–909.

    Google Scholar 

  37. T. Furuta: Invitation to linear operators., Taylor and Francis, London-N. York 2001.

    Book  MATH  Google Scholar 

  38. Y. K. Han, H. Y. Lee, W. Y. Lee: Invertible completions of 2 × 2 upper triangular operator matrices. Proc. Amer. Math. Soc. 129 (2001), 119–123.

    Article  MathSciNet  Google Scholar 

  39. Y. M. Han, J. I. Lee, D. Wang: Riesz idempotent and Weyl’s theorem for w-hyponormal operator. Integ. Equ. Oper. theory 53, (2005), 51–60.

    Article  MATH  MathSciNet  Google Scholar 

  40. I. H. Kim: On (p,k)-quasihyponormal operators. Math. Inequal. and Appl.7, 4, (2004), 629–638.

    Google Scholar 

  41. J. J. Koliha: Isolated spectral points Proc. Amer. Math. Soc. 124 (1996), 3417–3424.

    Article  MATH  MathSciNet  Google Scholar 

  42. D. C. Lay: Spectral analysis using ascent, descent, nullity and defect. Math. Ann. 184 (1970), 197–214.

    Article  MATH  MathSciNet  Google Scholar 

  43. K. B. Laursen, M. M. Neumann: Introduction to local spectral theory., Clarendon Press, Oxford 2000.

    MATH  Google Scholar 

  44. K.B. Laursen: Operators with finite ascent. Pacific J. Math. 152, (1992), 323–36.

    Article  MATH  MathSciNet  Google Scholar 

  45. W. Y. Lee: Weyl’spectra of operator matrices. Proc. Amer. Math. Soc. 129 (2001), 131–138.

    Article  MATH  MathSciNet  Google Scholar 

  46. W. Y. Lee, S. H. Lee: Some generalized theorems on p-quasihyponormal operators for 0 < p < 1. Nihonkai Math. J. 8, (1997), 109–115.

    MATH  MathSciNet  Google Scholar 

  47. C. Lin, Y. Ruan, Z. Yan: w-hyponormal operators are subscalar. Integr. Equ. oper. theory. 50, (2004), 165–168.

    Article  MATH  MathSciNet  Google Scholar 

  48. S. Mecheri: Isolated points of spectrum of k-quasi-*-class A operators. Studia Math. 208 (2012), no. 1, 87–96.

    Article  MATH  MathSciNet  Google Scholar 

  49. S. Mecheri: On a new class of operators and Weyl type theorems. Filomat 27(4), (2013), 629—636.

    Article  MathSciNet  Google Scholar 

  50. S. Mecheri, L. Braha: Polaroid and p–paranormal operators. Mathematical Inequalities and Appl. 16 (2013), 557–568.

    Article  MATH  MathSciNet  Google Scholar 

  51. M. Oudghiri: Weyl’s and Browder’s theorem for operators satisfying the SVEP Studia Math. 163, 1, (2004), 85–101.

    Article  MATH  MathSciNet  Google Scholar 

  52. K. Tanahashi: On log-hyponormal operators. Integral Equations Operator Theory 34, (1999), 364–372.

    Article  MATH  MathSciNet  Google Scholar 

  53. H. Weyl: Uber beschrankte quadratiche Formen, deren Differenz vollsteig ist. Rend. Circ. Mat. Palermo 27, (1909), 373–92.

    Article  MATH  Google Scholar 

  54. J. Yuan, Z. Gao: Weyl spectrum of class A(n) and n-paranormal operators. Integral Equations Operator Theory 60 (2008), 289–298.

    Article  MATH  MathSciNet  Google Scholar 

  55. J. T. Yuan, G. X. Ji: On (n,k)-quasi paranormal operators. Studia Math. 209, (2012), 289–301.

    Article  MATH  MathSciNet  Google Scholar 

  56. E. H. Zerouali, H. Zguitti: Perturbation of spectra of operator matrices and local spectral theory. J. Math. Anal. and Appl. 324 (2006), 292–1005.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro Aiena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Aiena, P. (2015). Polaroid operators and Weyl type theorems. In: Jeribi, A., Hammami, M., Masmoudi, A. (eds) Applied Mathematics in Tunisia. Springer Proceedings in Mathematics & Statistics, vol 131. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-18041-0_1

Download citation

Publish with us

Policies and ethics