Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 360))

Abstract

Unlike traditional datasets with a few explanatory variables, analysis of datasets with high number of explanatory variables requires different approaches. Determining effective explanatory variables, specifically in a complex and large-scale data provides an excellent opportunity to increase efficiency and reduce costs. In a large-scale data with many variables, a variable selection technique could be used to specify a subset of explanatory variables that are significantly more valuable to analyze specially in the survival data analysis. A heuristic variable selection method through ranking classification to analyze large-scale survival data which reduces redundant information and facilitates practical decision-making by evaluating variable efficiency (the correlation of variable and survival time) is presented. A numerical simulation experiment is developed to investigate the performance and validation of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. IBM: Information Integration and Governance (2011), http://www.ibm.com

  2. McAfee, A., Brynjolfsson, E.: Big data: the management revolution. Harvard Business Review 90, 60–66 (2012)

    Google Scholar 

  3. IBM: What is Big Data? Bringing Big Data to the Enterprise (2013), http://www.ibm.com

  4. Hilbert, M., Lopez, P.: The World’s Technological Capacity to Store, Communicate, and Compute Information. Science 332(6025), 60–65 (2011)

    Article  Google Scholar 

  5. Gartner (2011), http://www.gartner.com/newsroom/id/1731916

  6. Hellerstein, J.: Parallel Programming in the Age of Big Data (2008), https://gigaom.com/2008/11/09/mapreduce-leads-the-way-for-parallel-programming

  7. Segaran, T., Hammerbacher, J.: Beautiful Data: The Stories Behind Elegant Data Solutions. O’Reilly Media, Inc. (2009)

    Google Scholar 

  8. Feldman, D., Schmidt, M., Sohler, C.: Turning big data into tiny data: Constant-size coresets for k-means, pca and projective clustering. In: Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1434–1453. SIAM (2013)

    Google Scholar 

  9. Manyika, J., et al.: Big Data: The Next Frontier for Innovation, Competition, and Productivity. McKinsey Global Institute (2011)

    Google Scholar 

  10. Moran, J.: Is Big Data a Big Problem for Manufacturers? (2013), http://www.sikich.com/blog/post/Is-Big-Data-a-Big-Problem-for-Manufacturers#.VPswcU_F_BM

  11. Brown, B., Chui, M., Manyika, J.: Are you ready for the era of ‘big data’. McKinsey Quarterly 4, 24–35 (2011)

    Google Scholar 

  12. Russom, P.: Big Data Analytics. TDWI Best Practices Report, Fourth Quarter (2011)

    Google Scholar 

  13. Sadeghzadeh, K., Salehi, M.B.: Mathematical Analysis of Fuel Cell Strategic Technologies Development Solutions in the Automotive Industry by the TOPSIS Multi-Criteria Decision Making Method. International Journal of Hydrogen Energy 36(20), 13272–13280 (2010)

    Article  Google Scholar 

  14. Chai, J., Liu, J.N., Ngai, E.W.: Application of decision-making techniques in supplier selection: A systematic review of literature. Expert Systems with Applications 40(10), 3872–3885 (2013)

    Article  Google Scholar 

  15. Yao, F.: Functional Principal Component Analysis for Longitudinal and Survival Data. Statistica Sinica 17(3), 965 (2007)

    MATH  MathSciNet  Google Scholar 

  16. Cox, D.R.: Regression Models and Life-Tables. Journal of the Royal Statistical Society 34(2), 187–220 (1972)

    MATH  Google Scholar 

  17. Kalbfleisch, J.D., Prentice, R.L.: The Statistical Analysis of Failure Time Data, vol. 360. John Wiley & Sons (2011)

    Google Scholar 

  18. Buckley, J., James, I.: Linear Regression with Censored Data. Biometrika 66(3), 429–436 (1979)

    Article  MATH  Google Scholar 

  19. Ishwaran, H., Kogalur, U.B., Blackstone, E.H., Lauer, M.S.: Random Survival Forests. The Annals of Applied Statistics, 841–860 (2008)

    Google Scholar 

  20. Ma, S., Kosorok, M.R., Fine, J.P.: Additive Risk Models for Survival Data with High-Dimensional Covariates. Biometrics 62(1), 202–210 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  21. Huang, J., Ma, S., Xie, H.: Regularized Estimation in the Accelerated Failure Time Model with High-Dimensional Covariates. Biometrics 62(3), 813–820 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and Regression Trees. CRC Press (1984)

    Google Scholar 

  23. Lee, E.T., Wang, J.: Statistical Methods for Survival Data Analysis, vol. 476. John Wiley & Sons (2003)

    Google Scholar 

  24. Holford, T.R.: Multivariate Methods in Epidemiology. Oxford University Press (2002)

    Google Scholar 

  25. Mendes, A.C., Fard, N.: Accelerated Failure Time Models Comparison to the Proportional Hazard Model for Time-Dependent Covariates with Recurring Events. International Journal of Reliability, Quality and Safety Engineering 21(2) (2014)

    Google Scholar 

  26. Zeng, D., Lin, D.Y.: Efficient Estimation for the Accelerated Failure Time Model. Journal of the American Statistical Association 102(480), 1387–1396 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  27. Sadeghzadeh, K., Fard, N.: Nonparametric Data Reduction Approach for Large-Scale Survival Data Analysis. IEEE (2015)

    Google Scholar 

  28. Sadeghzadeh, K., Fard, N.: Multidisciplinary Decision-Making Approach to High-Dimensional Event History Analysis through Variable Reduction. European Journal of Economics and Management 1(2), 76–89 (2014)

    Google Scholar 

  29. Stute, W., Wang, J.L.: The Strong Law under Random Censorship. The Annals of Statistics, 1591–1607 (1993)

    Google Scholar 

  30. Feo, T.A., Resende, M.G.: Greedy Randomized Adaptive Search Procedures. Journal of Global Optimization 6(2), 109–133 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  31. Hart, J.P., Shogan, A.W.: Semi-Greedy Heuristics: An Empirical Study. Operations Research Letters 6(3), 107–114 (1987)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasser Fard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Fard, N., Sadeghzadeh, K. (2015). Heuristic Ranking Classification Method for Complex Large-Scale Survival Data. In: Le Thi, H., Pham Dinh, T., Nguyen, N. (eds) Modelling, Computation and Optimization in Information Systems and Management Sciences. Advances in Intelligent Systems and Computing, vol 360. Springer, Cham. https://doi.org/10.1007/978-3-319-18167-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18167-7_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18166-0

  • Online ISBN: 978-3-319-18167-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics