Skip to main content

Density Based Cluster Extension and Dominant Sets Clustering

  • Conference paper
Graph-Based Representations in Pattern Recognition (GbRPR 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9069))

  • 1326 Accesses

Abstract

With the pairwise data similarity matrix as input, dominant sets clustering has been shown to be a promising clustering approach with some nice properties. However, its clustering results are found to be influenced by the similarity parameter used in building the similarity matrix. While histogram equalization transformation of the similarity matrices removes this influence effectively, this transformation causes over-segmentation in the clustering results. In this paper we present a density based cluster extension algorithm to solve the over-segmentation problem. Specifically, we determine the density threshold based on the minimum possible density inside the dominant sets and then add new members into clusters if the density requirement is satisfied. Our algorithm is shown to perform better than the original dominant sets algorithm and also some other state-of-the-art clustering algorithms in data clustering and image segmentation experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brendan, J.F., Delbert, D.: Clustering by passing messages between data points. Science 315, 972–976 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bulo, S.R., Pelillo, M., Bomze, I.M.: Graph-based quadratic optimization: A fast evolutionary approach. Computer Vision and Image Understanding 115(7), 984–995 (2011)

    Article  Google Scholar 

  3. Chang, H., Yeung, D.Y.: Robust path-based spectral clustering. Pattern Recognition 41(1), 191–203 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Daszykowski, M., Walczak, B., Massart, D.L.: Looking for natural patterns in data: Part 1. density-based approach. Chemometrics and Intelligent Laboratory Systems 56(2), 83–92 (2001)

    Article  Google Scholar 

  5. Dueck, D., Frey, B.J.: Non-metric affinity propagation for unsupervised image categorization. In: IEEE International Conference on Computer Vision, pp. 1–8 (2007)

    Google Scholar 

  6. Ester, M., Kriegel, H.P., Sander, J., Xu, X.W.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: International Conference on Knowledge Discovery and Data Mining, pp. 226–231 (1996)

    Google Scholar 

  7. Fowlkes, C., Belongie, S., Fan, C., Malik, J.: Spectral grouping using the nystrom method. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(2), 214–225 (2004)

    Article  Google Scholar 

  8. Gionis, A., Mannila, H., Tsaparas, P.: Clustering aggregation. ACM Transactions on Knowledge Discovery from Data 1(1), 1–30 (2007)

    Article  Google Scholar 

  9. Givoni, I.E., Chung, C., Frey, B.J.: Hierarchical affinity propagation. In: Conference on Uncertainty in Artificial Intelligence, pp. 238–246 (2009)

    Google Scholar 

  10. Givoni, I.E., Frey, B.J.: Semi-supervised affinity propagation with instance-level constraints. In: International Conference on Artificial Intelligence and Statistics, pp. 161–168 (2009)

    Google Scholar 

  11. Hamid, R., Maddi, S., Johnson, A.Y., Bobick, A.F., Essa, I.A., Isbell, C.: A novel sequence representation for unsupervised analysis of human activities. Artificial Intelligence 173, 1221–1244 (2009)

    Article  MathSciNet  Google Scholar 

  12. Hou, J., Xu, E., Chi, L., Xia, Q., Qi, N.M.: Dset++: a robust clustering algorithm. In: International Conference on Image Processing, pp. 3795–3799 (2013)

    Google Scholar 

  13. Hou, J., Pelillo, M.: A simple feature combination method based on dominant sets. Pattern Recognition 46(11), 3129–3139 (2013)

    Article  Google Scholar 

  14. Niu, D., Dy, J.G., Jordan, M.I.: Dimensionality reduction for spectral clustering. In: International Conference on Artificial Intelligence and Statistics, pp. 552–560 (2011)

    Google Scholar 

  15. Pavan, M., Pelillo, M.: A graph-theoretic approach to clustering and segmentation. In: IEEE International Conference on Computer Vision and Pattern Recognition, pp. 145–152 (2003)

    Google Scholar 

  16. Pavan, M., Pelillo, M.: Dominant sets and pairwise clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(1), 167–172 (2007)

    Article  Google Scholar 

  17. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 167–172 (2000)

    Google Scholar 

  18. Torsello, A., Bulo, S.R., Pelillo, M.: Grouping with asymmetric affinities: a game-theoretic perspective. In: IEEE International Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 292–299 (2006)

    Google Scholar 

  19. Torsello, A., Bulo, S.R., Pelillo, M.: Beyond partitions: Allowing overlapping groups in pairwise clustering. In: International Conference on Pattern Recognition, pp. 1–4 (2008)

    Google Scholar 

  20. Veenman, C.J., Reinders, M., Backer, E.: A maximum variance cluster algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(9), 1273–1280 (2002)

    Article  Google Scholar 

  21. Yan, D., Huang, L., Jordan, M.I.: Fast approximate spectral clustering. In: International Conference on Knowledge Discovery and Data Mining, pp. 907–916 (2009)

    Google Scholar 

  22. Yang, X.W., Liu, H.R., Laecki, L.J.: Contour-based object detection as dominant set computation. Pattern Recognition 45, 1927–1936 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Hou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Hou, J., Sha, C., E, X., Xia, Q., Qi, N. (2015). Density Based Cluster Extension and Dominant Sets Clustering. In: Liu, CL., Luo, B., Kropatsch, W., Cheng, J. (eds) Graph-Based Representations in Pattern Recognition. GbRPR 2015. Lecture Notes in Computer Science(), vol 9069. Springer, Cham. https://doi.org/10.1007/978-3-319-18224-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18224-7_26

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18223-0

  • Online ISBN: 978-3-319-18224-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics