Skip to main content

Entomopathogenic Nematode Production and Application: Regulation, Ecological Impact and Non–target Effects

  • Chapter
Nematode Pathogenesis of Insects and Other Pests

Abstract

Production and commercialization of biocontrol agents is a growing market with over 225 microbial biopesticides manufactured in 30 countries (Kabaluk & Gazdik, 2007). Although the use of Bacillus thuringiensis Berliner (Bacillales: Bacillaceae) (BT) was the dominant product in US, Mexico and Canada, being the selected product for 75 % of the crop and forest management, in the European market decreased to 25 % in 2004, with the expansion and use of other bioagents such as entomopathogenic nematodes (EPNs) (Cuddeford, 2008). Despite the drop in sales of the conventional products during early years in 2000s, detecting a decline of 1.5 % per year for pesticides and even a 2.5 % for herbicides and fungicides (CropLife International, 2007; Research, 2006; Thakore, 2006), still, the overall market of conventional pesticides is above 90 % compared with biopesticides (Bailey, Boyetchko, & Längle, 2010). One of the critical point in the development of biopesticides, including EPN, is the connection between the research and commercialization. Firstly, the new bioproducts should overpass the characteristics of conventional pesticides products, or at least, provide successful benefits under particular scenarios. Second, the development implies producing the documents required for the permits, following the regulations that are still unclear. At this moment, where IPM is the most recommended practice, and by law should be implemented in some countries, such as those belonging to EU, advancing on the clarification of those regulations and the new legal framework is urgent. Significant advances have been accomplished during the past years in the regulation and implementation of the biopesticides, which regulations and law directly affecting the EPN development for enterprises and other agents. In this chapter, issues related with the development and release of new bioproducts, such as those containing EPN, are illustrated. In particular, we cover the evolution related to the pesticides in EU, the environmental impact of their production with the example of the carbon footprint assessment and the potential non–target effects of the EPN release.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams, B. J., Fodor, A., Koppenhöfer, H. S., Stackenbrandt, E., Stock, S. P., & Klein, M. G. (2006). Biodiversity and systematic of nematode–bacterium entomopathogens. Biological Control, 38, 4–21.

    Google Scholar 

  • Adams, B. J., & Nguyen, K. B. (2002). Taxonomy and systematics. In R. Gaugler (Ed.), Entomopathogenic nematology (pp. 1–33). Wallingford, UK: CABI Publishing.

    Google Scholar 

  • Akhurst, R. J. (1982). Antibiotic activity of Xenorhabdus spp., bacteria symbiotically associated with insect pathogenic nematodes of the families Heterorhabditidae and Steinernematidae. Journal of General Microbiology, 128, 3061–3065.

    CAS  PubMed  Google Scholar 

  • Akhurst, R. J., & Smith, K. (2002). Regulation and safety. In R. Gaugler (Ed.), Entomopathogenic nematology (pp. 311–332). Wallingford, UK: CABI Publishing.

    Google Scholar 

  • Audsley, E., Stacey, K., Parsons, D. J., & Williams, A. G. (2009). Estimation of the greenhouse gas emissions from agricultural pesticide manufacture and use. Cranfield, UK: Cranfield University Report.

    Google Scholar 

  • Australian Government, Department of Agriculture. (2014). Agriculture. http://www.agriculture.gov.au/Style%20Library/Images/DAFF/__data/assets/pdffile/0008/2395160/Revised-guidelines-introduction-exotic-BCAs-update06-2014.pdf. Revised November 23, 2014.

  • Bailey, K. L., Boyetchko, S. M., & Längle, T. (2010). Social and economic drivers shaping the future of biological control: A Canadian perspective on the factors affecting the development and use of microbial biopesticides. Biological Control, 52, 221–229.

    Google Scholar 

  • Barbercheck, M. E., & Millar, L. C. (2000). Environmental impacts of entomopathogenic nematodes used for biological control in soil. In P. A. Follett & J. J. Duan (Eds.), Nontarget effects of biological control (pp. 287–308). Boston: Kluwer Academic Publishers.

    Google Scholar 

  • Base Carbone. (2014). Bilans GES. Centre de resources sur les bilans de gaz à effet de serre. Database consultation. http://www.bilans-ges.ademe.fr/fr/basecarbone/donnees-consulter/liste-element?recherche=insecticide. Revised November 23, 2014.

  • Battisti, A. (1994). Effects of entomopathogenic nematodes on the spruce web–spinning sawfly Cephalcia arvensis Panzer and its parasitoids in the field. Biocontrol Science and Technology, 4, 95–102.

    Google Scholar 

  • BCC Research. (2006). The new biopesticide market. http://www.bccresearch.com/chemicals

  • Bedding, R. A., & Akhurst, R. J. (1975). A simple technique for the detection of insect parasitic rhabditids nematodes in soil. Nematologica, 21, 109–110.

    Google Scholar 

  • Bedding, R. A., & Molyneux, A. S. (1982). Penetration of insect cuticle by infective larvae of Heterorhabditis spp. (Heterorhabditidae: Nematoda). Nematologica, 28, 354–359.

    Google Scholar 

  • Bedding, R. A., Tyler, S., & Rocherster, N. (1996). Legislation on the introduction of exotic entomopathogenic nematodes into Australia and New Zealand. Biocontrol Science and Technology, 6, 465–475.

    Google Scholar 

  • Boemare, N. E. (2002). Biology, taxonomy and systematics of Photorhabdus and Xenorhabdus. In R. Guagler (Ed.), Entomopathogenic nematology (pp. 35–56). Wallingford, UK: CABI Publishing.

    Google Scholar 

  • Boemare, N. E., Laumond, C., & Mauleon, H. (1996). The nematode–bacterium complexes: Biology, life cycle and vertebrate safety. Biocontrol Science and Technology, 6, 333–345.

    Google Scholar 

  • Bonifassi, E., Fischer-Le Saux, M., Boemare, N., Lanois, A., Laumond, C., & Smart, G. (1999). Gnotobiological study of infective juveniles and symbionts of Steinernema scapterisci: A model to clarify the concept of the natural occurrence of monoxenic associations in entomopathogenic nematodes. Journal of Invertebrate Pathology, 74, 164–172.

    CAS  PubMed  Google Scholar 

  • Bovien, P. (1937). Some types of association between nematodes and insects. Videnskabelige Meddelelser Fra Dansk Naturahistorisk Forening, Khobenhavn, 101, 1–114.

    Google Scholar 

  • Bowen, D. J., & Ensing, J. C. (1998). Purification and characterization of a high–molecular–weight insecticidal protein complex produced by the entomopathogenic bacterium Photorhabdus luminescens. Applied and Environmental Microbiology, 64, 3029–3035.

    CAS  PubMed Central  PubMed  Google Scholar 

  • BSI. (2012). PAS 2050–1:2012. Publicly Available Specification. Assessment of life cycle greenhouse gas emissions from horticultural products – Supplementary requirements for the cradle to gate stages of GHG assessments of horticultural products undertaken in accordance with PAS 2050. BSI Standards Limited. London, UK: British Standards Institute.

    Google Scholar 

  • Campos-Herrera, R., Barbercheck, M., Hoy, W. H., & Stock, S. P. (2012). Entomopathogenic nematodes as a model system for advancing the frontiers of ecology. Journal of Nematology, 44, 162–176.

    PubMed Central  PubMed  Google Scholar 

  • Campos-Herrera, R., El-Borai, F. E., Stuart, R. J., Graham, J. H., & Duncan, L. W. (2011). Entomopathogenic nematodes, phoretic Paenibacillus spp., and the use of real time quantitative PCR to explore soil food webs in Florida citrus groves. Journal of Invertebrate Pathology, 108, 30–39.

    PubMed  Google Scholar 

  • Campos-Herrera, R., Jaffuel, G., Chiriboga, X., Blanco-Pérez, R., Fesselet, M., Půža, V., Mascher, F., Turlings, T.C.J. (2015). Traditional and molecular detection methods reveal intense interguild competition and other multitrophic interactions associated with native entomopathogenic nematodes in Swiss tillage soils. Plant and Soil, 389, 237–255.

    CAS  Google Scholar 

  • Campos-Herrera, R., Johnson, E. G., El-Borai, F. E., Stuart, R. J., Graham, J. H., & Duncan, L. W. (2011). Long–term stability of entomopathogenic nematode spatial patterns measured by sentinel insects and real–time PCR assays. Annals of Applied Biology, 158, 55–68.

    CAS  Google Scholar 

  • Campos-Herrera, R., Pathak, E., El-Borai, F. E., Stuart, R. J., Gutiérrez, C., Rodríguez-Martín, J.A., Graham, J.H., Duncan, L.W. (2013). Geospatial patterns of soil properties and the biological control potential of entomopathogenic nematodes in Florida citrus groves. Soil Biology and Biochemistry, 66, 163–174.

    CAS  Google Scholar 

  • Campos-Herrera, R., Trigo, D., & Gutiérrez, C. (2006). Phoresy of the entomopathogenic nematode Steinernema feltiae by the earthworm Eisoenia fetida. Journal of Invertebrate Pathology, 92, 50–54.

    PubMed  Google Scholar 

  • Capinera, J. L., Blue, S. L., & Wheeler, G. S. (1982). Survival of earthworms exposed to Neoaplectana carpocapsae nematodes. Journal of Invertebrate Pathology, 39, 419–421.

    Google Scholar 

  • Carbon Trust. (2014). Product carbon footprinting for beginners. London, UK: Carbon Trust.

    Google Scholar 

  • CBD (2014). The convention on biological diversity. http://www.cbd.int/. Revised November 23, 2014.

  • CropLife International. (2007). Annual report 2006/2007. http://www.croplife.org/library/attachments/5650a1df50df403daecdd0e607e878ce/7/Annual_Report_2006–2007.pdf

  • Cuddeford, V. (2008). Biocontrol files, Issue 13, March 2008, Co-published by World Wildlife Fund, the Biocontrol Network, and Agriculture and Agri-Food Canada, pp. 1–8. www.biocontrol.ca

  • Delfosse, E. S. (2005). Risk and ethics in biological control. Biological Control, 35, 319–329.

    Google Scholar 

  • De Nardo, E. A. B., Grewal, P. S., McCartney, D., & Stinner, B. R. (2006). Non-target effects of entomopathogenic nematodes on soil microbial community and nutrient cycling processes: A microcosm study. Applied Soil Ecology, 34, 250–257.

    Google Scholar 

  • Dolinski, C., Choo, H. Y., & Duncan, L. W. (2012). Grower acceptance of entomopathogenic nematodes: Case studies on three continents. Journal of Nematology, 44, 226–235.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dudney, R. A. (1997). Use of Xenorhabdus nematophilus Im/1 and 19061/1 for the fire ant control. US Patent US 5,616,318 970,401 (Aplicación informática, US 95–488,820 950,609).

    Google Scholar 

  • Duncan, L. W., Graham, J. H., Dunn, D. C., Zellers, J., McCoy, C. W., & Nguyen, K. (2003). Incidence of endemic entomopathogenic nematodes following application of Steinernema riobrave for control of Diaprepes abbreviatus. Journal of Nematology, 35, 178–186.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Duncan, L. W., Graham, J. H., Zellers, J., Bright, D., Dunn, D. C., El-Borai, F. E., et al. (2007). Food web responses to augmenting the entomopathogenic nematodes in bare and animal manure–mulched soil. Journal of Nematology, 39, 176–189.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Duncan, L. W., Stuart, R. J., El-Borai, F. E., Campos-Herrera, R., Pathak, E., & Graham, J. H. (2013). Modifying orchard planting sites conserves entomopathogenic nematodes, reduces weevil herbivory and increases citrus tree growth, survival and fruit yield. Biological Control, 64, 26–36.

    Google Scholar 

  • East, P. D., Cao, A., & Akhurst, R. J. (1998). Toxin genes from the bacterium Xenorhabdus nematophilus and Photorhabdus luminescens. International Patent Application PCT/AU98/00562.

    Google Scholar 

  • Ehlers, R.-U. (1996). Current and future use of nematodes in biocontrol: Practice and commercial aspects with regard to regulatory policy issues. Biocontrol Science and Technology, 6, 303–316.

    Google Scholar 

  • Ehlers, R.-U. (2007). Sustainable management of Europe’s natural resources. Final report (pp. 1–50). REBECA, Specific Support Action, project no. SSPE–CT–2005–022709.

    Google Scholar 

  • Ehlers, R.-U., & Hokkanen, H. M. T. (1996). Insect control with non-endemic entomopathogenic nematodes (Steinernema and Heterorhabditis spp.): Conclusions and recommendations for a combined OECD and COST workshop on scientific and regulatory policy issues. Biocontrol Science Technology, 6, 295–302.

    Google Scholar 

  • El-Borai, F. E., Duncan, L. W., & Preston, J. F. (2005). Bionomics of a phoretic association between Paenibacillus sp. and the entomopathogenic nematode Steinernema diaprepesi. Journal of Nematology, 37, 18–25.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eng, M. S., Preisser, E. L., & Strong, D. R. (2005). Phoresy of the entomopathogenic nematode Heterorhabditis marelatus by a non-host organism, the isopod Porcellio scaber. Journal of Invertebrate Pathology, 88, 173–176.

    PubMed  Google Scholar 

  • Enright, M. R., & Griffin, C. T. (2004). Specificity of association between Paenibacillus spp. and the entomopathogenic nematodes, Heterorhabditis spp. Microbial Ecology, 48, 412–421.

    Google Scholar 

  • Enright, M. R., & Griffin, C. T. (2005). Effects of Paenibacillus nematophilus on the entomopathogenic nematode Heterorhabditis megidis. Journal of Invertebrate Pathology, 88, 40–48.

    PubMed  Google Scholar 

  • Enright, M. R., McInerney, J. O., & Griffin, C. T. (2003). Characterization of endospore-forming bacteria associated with entomopathogenic nematodes, Heterorhabditis spp., and description of Paenibacillus nematophilus sp. nov. International Journal of Systematic and Evolutionary Microbiology, 53, 435–441.

    CAS  PubMed  Google Scholar 

  • Fang, X. L., Zhang, M. R., Tang, Q., Wang, Y. H., & Zhang, X. (2014). Inhibitory effect of Xenorhabdus nematophila TB on plant pathogens Phytophthora capsici and Botrytis cinerea in vitro and in planta. Scientific Reports, 4, article no. 4300.

    PubMed  Google Scholar 

  • FAO. (2013). FAO statistical yearbook 2013. World, food and agriculture. Rome: Food and Agriculture Organization of the United Nations.

    Google Scholar 

  • FAO. (2014a). Food and nutrition in numbers 2014. Rome: Food and Agriculture Organization of the United Nations.

    Google Scholar 

  • FAO. (2014b). Greenhouse gas emissions from agriculture, forestry and other land use. FAO Infographics, 1 p. Downloadable from: http://www.fao.org/resources/infographics/infographics–details/en/c/218650/

  • FAO. (2014c). Emissions from agriculture. Food and Agriculture Organization of the United Nations. Statistics Division web page. http://faostat3.fao.org/download/G1/GT/E. Revised October 15, 2014.

  • FAO. (2014d). Agricultural and arable area 2011. Food and Agriculture Organization of the United Nations. Statistics Division web page. http://faostat3.fao.org/download/E/EL/E. Revised October 15, 2014.

  • Farmer, J. J., Jorgernsen, P. A., Grimount, P. A. D., Akhurst, R. J., Poinar, G. O., Ageron, E., et al. (1989). Xenorhabdus luminescens (DNA hybridization group 5) from human clinical specimens. Journal of Clinical Microbiology, 27, 1594–1600.

    PubMed Central  PubMed  Google Scholar 

  • Gaugler, R., Campbell, J. F., Selvan, S., & Lewis, E. E. (1992). Large-scale inoculative releases of the entomopathogenic nematode Steinernema glaeri: Assessment 50 years later. Biological Control, 2, 181–187.

    Google Scholar 

  • Georgis, R. (1992). Present and future for entomopathogenic nematodes products. Biocontrol Science and Technology, 2, 83–99.

    Google Scholar 

  • Georgis, R., Kaya, H. K., & Gaugler, R. (1991). Effect of steinernematid and heterorhabditid nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) on nontarget arthropods. Environmental Entomology, 20, 815–822.

    Google Scholar 

  • Georgis, R., Koppenhöfer, A. M., Lacey, L. A., Bélair, G., Duncan, L. W., Grewal, P. S., et al. (2006). Successes and failures in the use of parasitic nematodes for pest control. Biological Control, 38, 103–123.

    Google Scholar 

  • Gerrard, J. G., Joyce, S. A., Clarke, D. J., French-Constant, R. H., Nimmo, G. R., Looke, D. F. M., et al. (2006). Nematode symbiont for Photorhabdus asymbiotica. Emerging Infectious Diseases, 12, 1562–1564.

    PubMed Central  PubMed  Google Scholar 

  • GHG Protocol. (2011). Product life cycle accounting and reporting standard. World Resources Institute (WRI)–World Business Council for Sustainable Development (WBCSD). Downloadable at: http://www.ghgprotocol.org/standards/product–standard

  • GHG Protocol. (2014). FAQ. GHG Protocol. http://www.ghgprotocol.org/calculation–tools/faq. Revised February 13, 2014.

  • Girling, R. D., Ennis, D., Dillon, A. B., & Griffin, C. T. (2010). The lethal and sub-lethal consequences of entomopathogenic nematode infestation and exposure for adult pine weevils, Hylobius abietis (Coleoptera: Curculionidae). Journal of Invertebrate Pathology, 104, 195–202.

    CAS  PubMed  Google Scholar 

  • Grewal, P. S., Lewis, E. E., & Venkatachari, S. (1999). Allelopathy: A possible mechanism of suppression of plant–parasitic nematodes by entomopathogenic nematodes. Nematology, 1, 735–743.

    Google Scholar 

  • Griffin, C. T., Downes, M. J., & Block, W. (1990). Test of Antarctic soils for insect parasitic nematodes. Antarctic Science, 2, 221–222.

    Google Scholar 

  • Han, R., & Ehlers, R.-U. (1999). Trans-specific nematicidal activity of Photorhabdus luminescens. Nematology, 1, 735–743.

    Google Scholar 

  • Harrison, L., Moeed, A., & Sheppard, A. (2005). Regulation of the release of biological control agents of arthropods in New Zealand and Australia. In M. S. Hoddle (Ed.), Proceedings of the second international symposium on biological control of arthropods, Davos, Switzerland, 12–16 September 2005 (FHTET–2005–08, pp. 715–725). Morgantown, WV: United States Department of Agriculture, Forest Service.

    Google Scholar 

  • Hill, D. E. (1998). Entomopathogenic nematodes as control agents of developmental stages of the black-legged tick, Ixodes scapularis. Journal of Parasitology, 84, 1124–1127.

    CAS  PubMed  Google Scholar 

  • Hokkanen, H., & Menzler-Hokkanen, I. (2007). Comparison of benefits/risks between different groups of plant protection products. Deliverable 26 (pp. 1–15), REBECA, Specific Support Action, project no. SSPE–CT–2005–022709.

    Google Scholar 

  • Hominick, W. M. (2002). Biogeography. In R. Gaugler (Ed.), Entomopathogenic nematology (pp. 115–143). Wallingford, UK: CABI Publishing.

    Google Scholar 

  • Hominick, W. M., & Briscoe, B. R. (1990). Survey of 15 sites over 28 months for entomopathogenic nematodes (Rhabditida: Steinernematidae). Parasitology, 100, 289–294.

    Google Scholar 

  • Hominick, W. M., Reid, A. P., Bohan, D. A., & Briscoe, B. R. (1996). Entomopathogenic nematodes: Biodiversity, geographical distribution and the Convection on Biological Diversity. Biocontrol Science and Technology, 6, 317–331.

    Google Scholar 

  • Hunt, E. J., Kuhlmann, U., Sheppard, A., Qin, T. K., Barratt, B. I. P., Harrison, L., et al. (2007). Review of invertebrate biological control agent regulation in Australia, New Zealand, Canada and the USA: Recommendations for a harmonized European system. Journal of Applied Entomology, 132(2), 89–123.

    Google Scholar 

  • Ishibashi, N., Young, F. Z., Nakashima, M., Abiru, C., & Haraguchi, N. (1987). Effects of application of DD–136 on silkworm, Bombyx mori predatory insect, Agriosphodorus dohrni, parasitoid, Trichomalus apanteloctenus, soil mites, and other non–target soil arthropods, with brief notes on feeding behaviour and predatory pressure of soil mites, tardigrades and predatory nematode on DD–136 nematodes. In N. Ishibashi (Ed.) Recent advances in biological control of insect pests by entomogenous nematodes in Japan (pp. 158–164). Ministry of Education, Japan, Grant n° 59860005 (in Japanese, abstract in English).

    Google Scholar 

  • Jagdale, G. B., & Grewal, P. S. (2008). Influence of the entomopathogenic nematode Steinernema carpocapsae infected host cadavers or their extracts on the foliar nematode Aphelenchoides fragariae on Hosta in the greenhouse and laboratory. Biological Control, 44, 13–23.

    Google Scholar 

  • Jagdale, G. B., Kamoun, S., & Grewal, P. S. (2009). Entomopathogenic nematodes induce components of systemic resistance in plants: Biochemical and molecular evidence. Biological Control, 51, 102–109.

    CAS  Google Scholar 

  • Jagdale, G. B., Somasekhan, N., Grewal, P. S., & Klein, M. G. (2002). Suppression of plant–parasitic nematodes by application of life and dead infective juveniles of an entomopathogenic nematode, Steinernema carpocapsae, on boxwood (Buxus spp.). Biological Control, 24, 42–49.

    Google Scholar 

  • Jaworska, M. (1991). Infection of the terrestrial isopod Porcellio scaber Larr. and millipede Blaniulus guttulatus Bosc. with entomopathogenic nematodes (Nematoda: Rhabditidae) in laboratory conditions. Folia Horticulturae, 3, 115–120.

    Google Scholar 

  • Jaworska, M. (1993). Laboratory infection of slugs (Gastropoda: Pulmonata) with entomopathogenic nematodes (Rhabditida: Nematoda). Journal of Invertebrate Pathology, 61, 223–244.

    Google Scholar 

  • Kabaluk, T., & Gazdik, K. (2007). Directory of microbial pesticides for agricultural crops in OECD countries. Agriculture & Agri-Food Canada. http://www4.agr.gc.ca/resources/prod/doc/pmc/pdf/micro_e.pdf> .

  • Kaya, H. K. (1978). Infectivity of Neoaplectana carpocapsae and Heterorhabditis heliothidis to pupae of the parasite Apanteles militaris. Journal of Nematology, 10, 241–244.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kaya, H. K. (1984). Effect of the entomogenous nematode Neoaplectana carpocapsae on the tachinid parasite Compsilura concinnata (Diptera: Tachinidae). Journal of Nematology, 16, 9–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kaya, H. K., Aguillera, M. M., Alumai, A., Choo, H. Y., de la Torre, M., Fodor, A., et al. (2006). Status of entomopathogenic nematodes and their symbiotic bacteria from selected countries or regions of the world. Biological Control, 38, 134–155.

    Google Scholar 

  • Kermarrec, A., & Mauleón, H. (1985). Potential noxiousness of the entomogenous nematode Neoaplectana carpocapsae Weiser to the Antillan toad Bufo marinus L. Mededelingen Faculteit Landbouwkundige University of Gent, 50, 831–838.

    Google Scholar 

  • Kermarrec, A., Mauleón, H., Sirjusingh, C., & Baud, L. (1991). Experimental studies on the sensitivity of tropical vertebrates (toad, frogs and lizards) to different species of entomopathogenic nematodes of the genera Heterorhabditis and Steinernema. In C. Pavis & A. Kermarrec (Eds.), Rencontres Caraïbes en Lutte Biologique (pp. 193–204). Paris: Institute National de la Recherche Agronomique.

    Google Scholar 

  • Kobayashi, M., Okano, H., & Kirihara, S. (1987). The toxicity of steinernematid and heterorhabditid nematodes to male mice. In N. Ishibashi (Ed.), Recent advances in biological control of insect pests by entomogenous nematodes in Japan (pp. 153–157). Japan: Saga University.

    Google Scholar 

  • Kruitbos, L. M., Heritage, S., & Wilson, M. J. (2009). Phoretic dispersal of entomopathogenic nematodes by Hylobius abietis. Nematology, 11, 419–427.

    Google Scholar 

  • Lacey, L. A., Bettencourt, R., Garrett, F. J., Simões, N. J., & Gaugler, R. H. (1993). Factors influencing parasitism of adult Japanese beetles, Popillia japonica (Col.: Scarabaeidae) by entomopathogenic nematodes. Entomophaga, 38, 501–509.

    Google Scholar 

  • Lemiere, S., Coderre, D., Vincent, C., & Bélair, G. (1996). Lethal and sublethal effects of the entomogeus nematodes, Steinernema carpocapsae, on the coccinellid Harmonia axyridis. Nematropica, 26, 284–285.

    Google Scholar 

  • Lewis, E. E., Grewal, P. S., & Sardanelli, S. (2001). Interactions between the Steinernema feltiae–Xenorhabdus bovienii insect pathogen complex and the root–knot nematode Meloidogyne incognita. Biological Control, 21, 55–62.

    Google Scholar 

  • Li, J. X., Chen, G. H., & Webster, J. M. (1997). Nematophin, a novel antimicrobial substance produced by Xenorhabdus nemathophilus (Enterobacteriaceae). Canadian Journal of Microbiology, 43, 770–773.

    CAS  PubMed  Google Scholar 

  • Li, P. S., Deng, C. S., Zhang, S. G., & Yang, H. W. (1986). Laboratory studies on the infectivity of the nematode Steinernema glaseri to Oncomelania hupensis, a snail intermediate host of blood fluke, Schistosoma japonicum. Chinese Journal of Biological Control, 2, 50–53.

    Google Scholar 

  • Loomans, A. J. M. (2007). Regulation of invertebrate Biological Control Agents in Europe: Review and recommendations in its pursuit of a harmonised regulatory system. Report EU project REBECA (pp. 1–26), Specific Support Action, project no. SSPE–CT–2005–022709.

    Google Scholar 

  • López-Cepero, J., & Díaz, M. (2013). La producción integrada como herramienta para una producción sostenible: análisis crítico y aplicación a Canarias. Graduate thesis, Universidad de La Laguna, Spain.

    Google Scholar 

  • Mauleon, H., Barré, N., & Panoma, S. (1993). Pathogenicity of 17 isolates of entomophagous nematodes (Steinernematidae and Heterorhabditidae) for the ticks Amblyomma variegatum (Fabricius), Boophilus microplus (Canestrini) and Boophilus annulatus (Say). Experimental and Applied Acarology, 17, 831–838.

    CAS  PubMed  Google Scholar 

  • Maxwell, P. W., Chen, G., Webster, J. W., & Dunphy, G. B. (1994). Stability and activities of antibiotics produced during infection of the insect Galleria mellonella by two isolates of Xenorhabdus nematophilis. Applied and Environmental Microbiology, 60, 715–721.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Millar, L. C., & Barbercheck, M. E. (2001). Interaction between endemic and introduced entomopathogenic nematodes in conventional–till and no till corn. Biological Control, 22, 235–245.

    Google Scholar 

  • Molyneux, A. S., Bedding, R. A., & Akhurst, R. J. (1983). Susceptibility of larvae of the sheep blowfly Lucilia cuprina to various Heterorhabditis spp., Neoaplectana spp., and an undescribed steinernematid (Nematoda). Journal of Invertebrate Pathology, 42, 1–7.

    CAS  PubMed  Google Scholar 

  • Morgan, J. A. W., Kuntzelmann, V., Tavernor, S., Ousley, M. A., & Winstanley, C. (1997). Survival of Xenorhabdus nematophilus and Photorhabdus luminescens in water and soil. Journal of Applied Microbiology, 83, 665–670.

    Google Scholar 

  • Mráček, Z., & Bečvář, S. (2000). Insect aggregations and entomopathogenic nematode occurrence. Nematology, 2, 297–301.

    Google Scholar 

  • Mráček, Z., Bečvář, S., Kindlmann, P., & Jersákova, J. (2005). Habitat preference for entomopathogenic nematodes, their insect hosts and new faunistic records for the Czech Republic. Biological Control, 34, 27–37.

    Google Scholar 

  • NAPPO. (2000). Guidelines for petition for release of exotic entomophagous agents for the biological control. Regional standards for phytosanitary measures #12. http://www.nappo.org/Standards/OLDSTDS/RSPM12–e.pdf

  • Ng, K. K., & Webster, J. M. (1997). Antimycotic activity of Xenorhabdus bovienii (Enterobacteriaceae) metabolites against Phytophthora infestans on potato plants. Canadian Journal of Plant Pathology, 19, 125–132.

    CAS  Google Scholar 

  • Nickle, W. R., Drea, J. J., & Coulson, J. R. (1988). Guidelines for introducing beneficial insect–parasitic nematodes intro the United States. Annals of Applied Nematology, 2, 50–56.

    Google Scholar 

  • Nüutinen, V., Tyni-Juslin, J., Vänninen, I., & Vainio, A. (1991). The effects of four entomopathogenic fungi and an entomopathogenic nematode on the hatching of earthworm (Aporrectodea caliginosa) cocoons in laboratory. Journal of Invertebrate Pathology, 58, 147–149.

    Google Scholar 

  • Obendorf, D. L., Peel, B., Akhurst, R. J., & Miller, L. A. (1983). Non-susceptibility of mammals to the entomopathogenic bacterium X. nemathophilus. Environmental Entomology, 12, 368–370.

    Google Scholar 

  • Park, Y., Kim, M., Kim, J., Yang, K.-U., & Kim, Y. (2001). Toxicological analysis of the entomopathogenic nematode, Steinernema carpocapsae and the symbiotic bacteria, Xenorhabdus nematophilus on beneficial insects and mammals. Korean Journal of Applied Entomology, 40, 259–264.

    Google Scholar 

  • Parkman, J. P., Frank, J. H., Nguyen, K. B., & Smart, G. C., Jr. (1993). Dispersal of Steinernema scapterisci (Rhabditida: Steinernematidae) after inoculative applications for mole cricket (Orthoptera: Gryllotalpidae) control in pastures. Biological Control, 3, 226–232.

    Google Scholar 

  • Parkman, J. P., & Smart, G. C. (1996). Entomopathogenic nematodes, a case of study: Introduction of Steinernema scapterisci in Florida. Biocontrol Science and Technology, 6, 413–419.

    Google Scholar 

  • Pearson, D. E., & Callaway, R. M. (2005). Indirect nontarget effects of host–specific biological control agents: Implications for biological control. Biological Control, 35, 288–298.

    Google Scholar 

  • Peel, M. M., Alferson, D. A., Gerrad, J. G., Davis, J. M., Robson, H. M., McDougall, R. J., et al. (1999). Isolation, identification and molecular characterization of strains of Photorhabdus luminescens from infected humans in Australia. Journal of Clinical Investigation, 37, 3647–3653.

    CAS  Google Scholar 

  • Pérez, E. E., & Lewis, E. E. (2004). Suppression of Meloidogyne incognita and Meloidogyne hapla with entomopathogenic nematodes on greenhouse peanuts and tomatoes. Biological Control, 30, 336–341.

    Google Scholar 

  • Peters, A. (1996). The natural host range of Steinernema and Heterorhabditis spp. and their impact on insect populations. Biocontrol Science and Technology, 6, 389–402.

    Google Scholar 

  • Plichta, K. L., Joyce, S. A., Clarke, D., Waterfield, N., & Stock, S. P. (2009). Heterorhabditis gerrardi n. sp. (Nematoda: Heterorhabditidae): The hidden host of Photorhabdus asymbiotica (Enterobacteriaceae: γ-Proteobacteria). Journal of Helminthology, 83, 309–320.

    CAS  PubMed  Google Scholar 

  • Poinar, G. O., Jr. (1979). Nematodes for biological control of insect. Boca Ratón: CRC Press.

    Google Scholar 

  • Poinar, G. O., Jr. (1989). Non-insect hosts for the entomogenous rhabditoid nematodes Neoaplectana (Steinernematidae) and Heterorhabditis (Heterorhabditidae). Revue de Nématologie, 12, 423–428.

    Google Scholar 

  • Poinar, G. O., Jr., & Thomas, G. M. (1988). Infection of frog tadpoles (Amphibia) by insect parasitic nematodes (Rhabditida). Experientia, 44, 528–531.

    Google Scholar 

  • Poinar, G. O., Jr., Thomas, G. M., Presser, S. B., & Hardy, J. L. (1982). Inoculation of entomogenous nematode, Neoaplectana and Heterorhabditis and their associated bacteria, Xenorhabdus spp. into chicks and mice. Environmental Entomology, 11, 137–138.

    Google Scholar 

  • Potter, D. A., Spicer, P. G., Redmond, C. T., & Powell, A. J. (1994). Toxicity of pesticides to earthworms in Kentucky bluegrass turf. Bulletin of the Environmental Contamination and Toxicology, 52, 176–181.

    CAS  Google Scholar 

  • Půža, V., & Mráček, Z. (2005). Seasonal dynamics of entomopathogenic nematodes of the genera Steinernema and Heterorhabditis as a response to abiotic factors and abundance of insect hosts. Journal of Invertebrate Pathology, 89, 116–122.

    PubMed  Google Scholar 

  • Richardson, P. N. (1996). British and European legislation regulating rhabditid nematodes. Biocontrol Science and Technology, 6, 449–463.

    Google Scholar 

  • Rizvi, S. A., Hennessey, R., & Knott, D. (1996). Legislation on the introduction of exotic nematodes. Biocontrol Science and Technology, 6, 477–480.

    Google Scholar 

  • Ropek, D., & Jaworska, M. (1994). Effect of an entomopathogenic nematode, Steinernema carpocapsae Weiser (Nematoda: Steinernematidae), on a carabid beetles in field trials with annual legumes. Anzeiger für Schädlingskunde Pflanzenschutz Umweltschutz, 67, 97–100.

    Google Scholar 

  • Samish, M., & Glazer, I. (1991). Killing ticks with parasitic nematodes of insects. Journal of Invertebrate Pathology, 58, 281–282.

    CAS  PubMed  Google Scholar 

  • Shapiro, D. I., Berry, E. C., & Lewis, L. C. (1993). Interactions between nematodes and earthworms: Enhanced dispersal of Steinernema carpocapsae. Journal of Nematology, 25, 189–192.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shapiro, D. I., Tylka, G. L., Berry, E. C., & Lewis, L. C. (1995). Effects of earthworm on the dispersal of Steinernema spp. Journal of Nematology, 27, 21–28.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shapiro-Ilan, D., & Brown, I. (2013). Earthworms as phoretic hosts for Steinernema carpocapsae and Beauveria bassiana: Implications for enhanced biological control. Biological Control, 66, 41–48.

    Google Scholar 

  • Shapiro-Ilan, D. I., Han, R., & Qiu, X. (2014). Production of entomopathogenic nematodes. In J. A. Morales-Ramos, M. Guadalupe Rojas, & D. Shapiro-Ilan (Eds.), Mass production of beneficial organisms (pp. 321–355). London: Elsevier Inc.

    Google Scholar 

  • Smith, D. (2000). Legislation affecting the collection, use and safe handling of entomopathogenic microbes and nematodes. In A. Navon & K. R. S. Ascher (Eds.), Bioassays of entomopathogenic microbes and nematodes (pp. 295–314). Wallingford, UK: CAB International.

    Google Scholar 

  • Smith, K. A., Miller, R. W., & Simser, D. H. (1992). Entomopathogenic nematode bibliography: Heterorhabditid and steinernematid nematodes. In N. G. Wyatt (Ed.), A publication of the Nematode Subcommittee of the Southern Project S–240 development of entomopathogens as control agents for insect pests (Southern Cooperative Series Bulletin). Fayetteville, AR: University of Arkansas, Arkansas Agriculture Experiment Station.

    Google Scholar 

  • Somasekhar, N., Grewal, P. S., de Nardo, E. A. B., & Stinner, B. R. (2002). Non-target effects of entomopathogenic nematodes on the soil nematode community. Journal of Applied Ecology, 39, 735–744.

    Google Scholar 

  • Spiridonov, S. E., Moens, M., & Wilson, M. J. (2007). Fine scale spatial distributions of two entomopathogenic nematodes in a grassland soil. Applied Soil Ecology, 37, 192–201.

    Google Scholar 

  • Spiridonov, S. E., & Voronov, D. A. (1995). Small-scale distribution of Steinernema feltiae juveniles in cultivated soil. In C. T. Griffin, R. L. Gwynn, & J. P. Masson (Eds.), COST 819. Biotechnology: Ecology and transmission strategies of entomopathogenic nematodes(pp. 36–41). Brussels, Belgium: European Communities.

    Google Scholar 

  • Stuart, R. J., Barbercheck, M. E., Grewal, P. S., Taylor, R. A. J., & Hoy, C. W. (2006). Population biology of entomopathogenic nematodes: Concepts, issues, and models. Biological Control, 38, 80–102.

    Google Scholar 

  • Thakore, Y. (2006). The biopesticide market for global agricultural use. Industrial Biotechnology, 2, 194–208.

    Google Scholar 

  • Torr, P., Spiridonov, S. E., Heritage, S., & Wilson, M. J. (2007). Habitat associations of two entomopathogenic nematodes: A quantitative study using real–time quantitative polymerase chain reactions. Journal of Animal Ecology, 76, 238–245.

    PubMed  Google Scholar 

  • Triggiani, O. (1985). Influence of Steinernema and Heterorhabditis (Rhabditida) on the parasitoid Apanteles ultor Rhd. (Hymenoptera: Braconidae). La difesa delle Piante, 8, 293–300.

    Google Scholar 

  • Vyas, R. V., Maghodia, A. B., Patel, B. A., & Patel, D. J. (2004). Interaction between root–knot nematodes and Steinernema riobrave on okra (Abelmoschus esculentum). International Journal of Nematology, 14, 186–190.

    Google Scholar 

  • Webster, J. M. (2000). The role and potential of secondary metabolites of the bacterial symbionts: Insect pathogens and insect parasitic nematodes. IOBC/WPRS Bulletin, 23, 93–95.

    Google Scholar 

  • Webster, J. M., Chen, G., Hu, K., & Li, J. (2002). Bacterial metabolites. In R. Gaugler (Ed.), Entomopathogenic nematology (pp. 99–114). Wallingford, UK: CABI Publishing.

    Google Scholar 

  • Wilson, M. J., Glen, D. M., Hughes, L. A., Pearce, J. D., & Rodgers, P. B. (1994). Laboratory tests of the potential of entomopathogenic nematodes for the control of field slugs (Deroceras reticulatum). Journal of Invertebrate Pathology, 64, 182–187.

    Google Scholar 

  • Wilson, M. J., Lewis, E. E., Yoder, F., & Gaugler, R. (2003). Application pattern and persistence of the entomopathogenic nematode Heterorhabditis bacteriophora. Biological Control, 26, 180–188.

    Google Scholar 

  • World Bank. (2014). World development indicators: Agricultural inputs. http://wdi.worldbank.org/table/3.2. Revised November 14, 2014.

Download references

Acknowledgements

The authors would like to thank their colleagues from the Instituto Canario de Investigaciones Agrarias (Spain), Organización de Productores de Plátanos COPLACA (Spain), and University of Neuchàtel (Switzerland) for their support. The authors also acknowledge A.L.C.P.B. and R.B.P. for their time while preparing this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raquel Campos-Herrera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Piedra-Buena, A., López-Cepero, J., Campos-Herrera, R. (2015). Entomopathogenic Nematode Production and Application: Regulation, Ecological Impact and Non–target Effects. In: Campos-Herrera, R. (eds) Nematode Pathogenesis of Insects and Other Pests. Sustainability in Plant and Crop Protection. Springer, Cham. https://doi.org/10.1007/978-3-319-18266-7_10

Download citation

Publish with us

Policies and ethics