Skip to main content

Liquid Crystalline Anisotropic Nanoparticles: From Metallic and Semiconducting Nanoparticles to Carbon Nanomaterials

  • Chapter
  • First Online:
Anisotropic Nanomaterials

Part of the book series: NanoScience and Technology ((NANO))

Abstract

Anisotropic nanomaterials made of metals, semiconductors, or carbon are of special interest for their mechanical, electrical, magnetic, optical, chemical and other spectacular properties in the bottom-up fabrication of advanced functional materials and devices in the field of nanoscience and nanotechnology. To widen their applicability, it is necessary to process these anisotropic building blocks into different well-defined assembly structures with preferred orientations. This chapter deals with the liquid crystalline properties of one- and two-dimensional (1D and 2D) anisotropic nanoparticles such as nanorods, nanotubes, nanodiscs and graphene derivatives. The different strategies developed for the realization of liquid crystal phases from metallic, semiconducting and carbon based anisotropic nanoparticles have been discussed. High performance materials and devices fabricated by processing via liquid crystalline route of these materials have also been highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Q. Li (ed.), Liquid Crystals Beyond Displays: Physics, Chemistry, and Applications (Wiley, Hoboken, 2012)

    Google Scholar 

  2. Q. Li (ed.), Self-organized Organic Semiconductors: From Materials to Device Applications (Wiley, Hoboken, 2011)

    Google Scholar 

  3. H.K. Bisoyi, Q. Li, Liquid Crystals Kirk-Othmer Encyclopedia of Chemical Technology (Wiley-VCH, New York, 2014), pp. 1–52

    Book  Google Scholar 

  4. P.G. de Gennes, J. Prost, The Physics of Liquid Crystals (Oxford University Press, Oxford, 1993)

    Google Scholar 

  5. P.J. Collings, M. Hird, Introduction to Liquid Crystals: Chemistry and Physics (Taylor & Francis, London, 1997)

    Book  Google Scholar 

  6. S. Kumar, Chemistry of Discotic Liquid Crystals: From Monomers to Polymers (CRC Press, Boca Raton, 2011)

    Google Scholar 

  7. J.W. Goodby, P.J. Collings, T. Kato, C. Tschierske, H. Glesson, P. Raynes (eds.), Handbook of Liquid Crystals, 2nd edn. (Wiley-VCH, Weinheim, 2014)

    Google Scholar 

  8. Q. Li (ed.), Intelligent Stimuli Responsive Materials: From Well-Defined Nanostructures to Applications (Wiley, Hoboken, 2013)

    Google Scholar 

  9. G.H. Brown, J.J. Wolken, Liquid Crystals and Biological Structures (Academic Press, New York, 1979)

    Google Scholar 

  10. S.J. Woltman, G.D. Jay, G.P. Crawford (eds.), Liquid Crystals: Frontiers in Biomedical Applications (World Scientific, New Jersey, 2007)

    Google Scholar 

  11. A.G. Petrov, The Lyotropic state of Matter: Molecular Physics and Living Matter Physics (Gordon & Breach Science Publishers, Amsterdam, 1999)

    Google Scholar 

  12. F.C. Bawden, N.W. Pirie, J.D. Bernal, I. Fankuchen, Liquid crystalline substances from virus infected plants. Nature 138, 1051 (1936)

    Article  ADS  Google Scholar 

  13. Z. Dogic, S. Fraden, Ordered phases of filamentous viruses. Curr. Opin. Colloid. Inter. Sci. 11, 47–55 (2006)

    Article  Google Scholar 

  14. Z. Dogic, S. Fraden, Cholesteric phase in virus suspensions. Langmuir 16, 7820–7824 (2000)

    Article  Google Scholar 

  15. Z. Dogic, S. Fraden, Smectic phase in a colloidal suspension of semiflexible virus particles. Phys. Rev. Lett. 78, 2417–2420 (1997)

    Article  ADS  Google Scholar 

  16. M. Nakata, G. Zanchetta, B.D. Chapman, C.D. Jones, J.O. Cross, R. Pindak, T. Bellini, N.A. Clark, Science 318, 1276–1279 (2007)

    Article  ADS  Google Scholar 

  17. G. Zanchetta, M. Nakata, M. Buscaglia, T. Bellin, N.A. Clark, Proc. Natl. Acad. Sci. U.S.A. 105, 1111–1117 (2008)

    Article  ADS  Google Scholar 

  18. Q. Li (ed.), Nanoscience with Liquid Crystals: From Self-Organized Nanostructures to Applications (Springer, Heidelberg, 2014)

    Google Scholar 

  19. H.K. Bisoyi, S. Kumar, Liquid crystal nanoscience: an emerging avenue of soft self-assembly. Chem. Soc. Rev. 40, 306–319 (2011)

    Article  Google Scholar 

  20. G.J. Vroege, H.N.W. Lekkerkerker, Phase transitions in lyotropic colloidal and polymer liquid crystals. Rep. Prog. Phys. 55, 1241 (1992)

    Article  ADS  Google Scholar 

  21. H.N.W. Lekkerkerker, G.J. Vroege, Liquid crystal phase transitions in suspensions of mineral colloids: new life from old roots. Phil. Trans. R. Soc. A 371, 20120263 (2013)

    Article  ADS  Google Scholar 

  22. S.C. Glotzer, M.J. Solomon, Anisotropy of building blocks and their assembly into complex structures. Nat. Mater. 6, 557–562 (2007)

    Article  Google Scholar 

  23. P. Davidson, J.-C.P. Gabriel, Mineral liquid crystals. Curr. Opin. Collod. Inter. Sci. 9, 377–383 (2005)

    Article  Google Scholar 

  24. N. Miyamoto, T. Nakato, Liquid crystalline inorganic nanosheet colloids derived from layered materials. Isr. J. Chem. 52, 881–894 (2012)

    Article  Google Scholar 

  25. H.K. Bisoyi, S. Kumar, Carbon based liquid crystals: art and science. Liq. Cryst. 38, 1427–1449 (2011)

    Article  Google Scholar 

  26. T. Hegmann, H. Qi, V.M. Marx, Nanoparticles in liquid crystals: synthesis, self-assembly, defect formation and potential applications. J. Inorg. Organomet. Polym Mater. 17, 483–508 (2007)

    Article  Google Scholar 

  27. J.P.F. Lagerwall, G. Scalia, A new era for liquid crystal research: applications of liquid crystals in soft matter nano-, bio- and microtechnology. Curr. Appl. Phys. 12, 1387–1412 (2012)

    Article  ADS  Google Scholar 

  28. G.L. Nealon, R. Greget, C. Dominguez, Z.T. Nagy, D. Guillon, J.-L. Gallani, B. Donnio, Liquid-crystalline nanoparticles: hybrid design and mesophase structures. Beilstein J. Org. Chem. 8, 349–370 (2012)

    Article  Google Scholar 

  29. J.-C.P. Gabriel, P. Davidson, New trends in colloidal liquid crystals based on mineral moieties. Adv. Mater. 12, 9–20 (2000)

    Article  Google Scholar 

  30. J.P. Gabriel, P. Davidson, Mineral liquid crystals from self-assembly of anisotropic nanosystems. Top. Curr. Chem. 226, 119–172 (2003)

    Google Scholar 

  31. A.S. Sonin, Inorganic lyotropic liquid crystals. J. Mater. Chem. 8, 2557–2574 (1998)

    Article  Google Scholar 

  32. F. Guo, R. Hurt, Supramolecular synthesis of graphenic mesogenic materials. Macromol. Chem. Phys. 213, 1164–1174 (2012)

    Article  Google Scholar 

  33. Z. Xu, C. Gao, Graphene in macroscopic order: liquid crystals and wet-spun fibers. Acc. Chem. Res. 47, 1267–1276 (2014)

    Article  Google Scholar 

  34. L. Onsager, The effect of shape on the interaction of colloidal particles. Ann. N. Y. Acad. Sci. 51, 627–659 (1949)

    Article  ADS  Google Scholar 

  35. P.A. Buining, H.N.W. Lekkerkerker, Isotropic-nematic separation of a dispersion of organophilic boehmite rods. J. Phys. Chem. 97, 11510–11516 (1993)

    Article  Google Scholar 

  36. N.R. Jana, L.A. Gearheart, S.O. Obare, C.J. Johnson, K.J. Edler, S. Mann, C.J. Murphy, Liquid crystalline assemblies of ordered gold nanorods. J. Mater. Chem. 12, 2909–2912 (2002)

    Article  Google Scholar 

  37. V. Sharma, K. Park, M. Srinivasarao, Colloidal dispersion of gold nanorods: historical background, optical properties, seed-mediated synthesis, shape separation and self-assembly. Mater. Sci. Eng., R 65, 1–38 (2009)

    Article  Google Scholar 

  38. S. Umadevi, X. Feng, T. Hegmann, Large area self-assembly of nematic liquid-crystal-functionalized gold nanorods. Adv. Funct. Mater. 23, 1393–1403 (2012)

    Article  Google Scholar 

  39. S. Murali, T. Xu, B.D. Marshall, M.J. Kayatin, K. Pizarro, V.K. Radhakrishnan, D. Nepal, V.A. Davis, Lyotropic liquid crystalline self-assembly in dispersions of silver nanowires and nanoparticles. Langmuir 26, 11176–11183 (2010)

    Article  Google Scholar 

  40. J. Kim, A. de la Cotte, R. Deloncle, S. Archambeau, C. Biver, J.-P. Cano, K. Lahlil, J.-P. Boilot, E. Grelet, T. Gacoin, LaPO4 Mineral liquid crystalline suspensions with outstanding colloidal stability for electro-optical applications. Adv. Funct. Mater. 22, 4949–4956 (2012)

    Article  Google Scholar 

  41. A. Kuijk, A. van Blaaderen, A. Imhof, Synthesis of monodisperse, rodlike silica colloids with tunable aspect ratio. J. Am. Chem. Soc. 133, 2346–2349 (2011)

    Article  Google Scholar 

  42. T. Xu, V.A. Davis, Liquid crystalline phase behavior of silica nanorods in dimethyl sulfoxide and water. Langmuir 30, 4806–4813 (2014)

    Article  Google Scholar 

  43. K. Kanie, A. Maramatsu, Organic-inorganic hybrid liquid crystals: thermotropic mesophases formed by hybridization of liquid crystalline phosphates and monodispersed alpha-Fe2O3 particles. J. Am. Chem. Soc. 127, 11578–11579 (2005)

    Article  Google Scholar 

  44. S.M. Taheri, S. Fischer, M. Trebbin, S. With, J.H. Schroder, J. Perlich, S.V. Roth, S. Forster, Lyotropic phase behavior of polymer-coated iron oxide nanoparticles. Soft Matter 8, 12124–12131 (2012)

    Article  ADS  Google Scholar 

  45. J. Tang, S. Fraden, Magnetic-field-induced isotropic-nematic phase transition in a colloidal suspension. Phys. Rev. Lett. 71, 3509–3512 (1993)

    Article  ADS  Google Scholar 

  46. B.J. Lemaire, P. Davidson, J. Ferre, J.P. Jamet, P. Panine, I. Dzov, J.P. Jolivet, Outstanding magnetic properties of nematic suspensions of goethite (α-FeOOH) nanorods. Phys. Rev. Lett. 88(125507), 1–4 (2002)

    Google Scholar 

  47. S. Belli, A. Patti, M. Dijkstra, R. van Roij, Polydispersity stabilizes biaxial nematic liquid crystals. Phys. Rev. Lett. 107(148303), 1–4 (2011)

    Google Scholar 

  48. G.J. Vroege, D.M.E. Thies-Weesie, A.V. Petukhov, B.J. Lemaire, P. Davidson, Smectic liquid-crystalline order in suspensions of highly polydisperse goethite nanorods. Adv. Mater. 18, 2565–2568 (2006)

    Article  Google Scholar 

  49. E. van den Pol, D.M.E. Thies-Weesie, A.V. Petukhov, G.J. Vroege, K. Kvashnina, Influence of polydispersity on the phase behavior of colloidal goethite. J. Chem. Phys. 129(164715), 1–8 (2008)

    Google Scholar 

  50. B.J. Lemaire, P. Davidson, P. Panine, J.P. Jolivet, Magnetic-field-induced nematic-columnar phase transition in aqueous suspensions of goethite (α-FeOOH) nanorods. Phys. Rev. Lett. 93(267801), 1–4 (2004)

    Google Scholar 

  51. E. van den Pol, A.V. Petukhov, D.M.E. Thies-Weesie, D.V. Byelov, G.J. Vroege, Experimental realization of biaxial liquid crystal phases in colloidal dispersions of boardlike particles. Phys. Rev. Lett. 103(258301), 1–4 (2009)

    Google Scholar 

  52. E. Van den Pol, A. Lupascu, M.A. Diaconeasa, A.V. Petukhov, D.V. Byelov, G.J. Vroege, Onsager revisited: magnetic field induced nematic-nematic phase separation in dispersions of goethite nanorods. J. Phys. Chem. Lett. 1, 2174–2178 (2010)

    Article  Google Scholar 

  53. H. Maeda, Y. Maeda, Liquid crystal formation in suspensions of hard rodlike colloidal particles: direct observation of particle arrangement and self-ordering behavior. Phys. Rev. Lett. 90(018303), 1–4 (2003)

    Google Scholar 

  54. H. Maeda, Y. Maeda, An atomic force microscopy study of surface structures of colloidal β-FeOOH particles forming smectic layers. Nano Lett. 2, 1073–1077 (2002)

    Article  ADS  Google Scholar 

  55. L. Li, J. Walda, L. Manna, A.P. Alivisatos, Semiconductor nanorod liquid crystals. Nano Lett. 2, 557–560 (2002)

    Article  ADS  Google Scholar 

  56. L.-S. Li, A.P. Alivisatos, Semiconductor nanorod liquid crystals and their assembly on substrate. Adv. Mater. 15, 408–411 (2003)

    Article  Google Scholar 

  57. L. Li, M. Marjanska, G.H.J. Park, A. Pines, A.P. Alivisatos, Isotropic-liquid crystalline phase diagram of a CdSe nanorods solution. J. Chem. Phys. 120, 1149–1152 (2004)

    Article  ADS  Google Scholar 

  58. A. Dessombz, D. Chiche, P. Davidson, P. Panine, C. Chaneac, J.-P. Jolivet, Design of liquid-crystalline aqueous suspensions of rutile nanorods: evidence of anisotropic photocatalytic properties. J. Am. Chem. Soc. 129, 5904–5909 (2007)

    Article  Google Scholar 

  59. K. Kanie, T. Sugimoto, Organic-inorganic hybrid liquid crystals: hybridization of calamitic liquid crystalline amines with monodispersed anisotropic TiO2 nanoparticles. J. Am. Chem. Soc. 125, 10518–10519 (2003)

    Article  Google Scholar 

  60. S. Meuer, K. Fischer, I. Mey, A. Janshoff, M. Schmidt, R. Zentel, Liquid crystals from polymer-functionalized TiO2 nanorod mesogens. Macromolecules 41, 7946–7952 (2008)

    Article  ADS  Google Scholar 

  61. M. Zorn, S. Meure, M.N. Tahir, Y. Khalavka, C. Sonnichsen, W. Tremel, R. Zentel, Liquid crystalline phases from polymer functionalized semiconducting nanorods. J. Mater. Chem. 18, 3050–3058 (2008)

    Article  Google Scholar 

  62. M. Zorn, R. Zentel, Liquid crystalline orientation of semiconducting nanorods in a semiconducting matrix. Macromol. Rapid Commun. 29, 922–927 (2008)

    Article  Google Scholar 

  63. M. Zorn, M.N. Tahir, B. Bergmann, W. Tremel, C. Grigoriadis, G. Floudas, R. Zentel, Orientation and dynamics of ZnO nanorods liquid crystals in electric fields. Macromol. Rapid Commun. 31, 1101–1107 (2010)

    Article  Google Scholar 

  64. S. Zhang, P.W. Majewski, G. Keskar, L.D. Pfefferle, C.O. Osuji, Lyotropic self-assembly of high-aspect-ratio semiconductor nanowires of single-crystal ZnO. Langmuir 27, 11616–11621 (2011)

    Article  Google Scholar 

  65. S. Zhang, C.I. Pelligra, G. Keskar, P.W. Majewski, F. Ren, L.D. Pfefferle, C.O. Osuji, Liquid crystalline order and magnetocrystalline anisotropy in magnetically doped semiconducting ZnO nanowires. ACS Nano 5, 8357–8364 (2011)

    Article  Google Scholar 

  66. S. Zhang, S. Kumar, Carbon nanotubes as liquid crystals. Small 4, 1270–1283 (2008)

    Article  ADS  Google Scholar 

  67. C. Zakri, C. Blanc, E. Grelet, C. Zamora-Ledezma, N. Puech, E. Anglaret, P. Poulin, Liquid crystals of carbon nanotubes and graphene. Phil. Trans. R. Soc. A 371(20120499), 1–15 (2013)

    Google Scholar 

  68. W. Song, I.A. Kinloch, A.H. Windle, Nematic liquid crystallinity of multiwall carbon nanotubes. Science 302, 1363–1363 (2003)

    Article  Google Scholar 

  69. S. Zhang, I.A. Kinloch, A.H. Windle, Mesogenicity drives fractionation in lyotropic aqueous suspensions of multiwall carbon nanotubes. Nano Lett. 6, 568–572 (2006)

    Article  ADS  Google Scholar 

  70. S. Zhang, K.K.K. Koziol, I.A. Kinloch, A.H. Windle, Macroscopic fibers of well-aligned carbon nanotubes by wet spinning. Small 4, 1217–1222 (2008)

    Article  Google Scholar 

  71. W. Song, A.H. Windle, Isotropic-nematic phase transition of dispersions of multiwall carbon nanotubes. Macromolecules 38, 6181–6188 (2005)

    Article  ADS  Google Scholar 

  72. W. Song, A.H. Windle, Size-dependence and elasticity of liquid-crystalline multiwalled carbon nanotubes. Adv. Mater. 20, 3149–3154 (2008)

    Article  Google Scholar 

  73. V.A. Davis, L.M. Ericson, A.N.G. Parre-Vasquez, H. Fan, Y. Wang, V. Prieto, J.A. Longoria, S. Ramesh, R.K. Saini, C. Kittrell, W.E. Billups, W.W. Adams, R.H. Hauge, R.E. Smalley, M. Pasquali, Phase behavior and rheology of SWNTs in superacids. Macromolecules 37, 154–160 (2004)

    Article  ADS  Google Scholar 

  74. P.K. Rai, R.A. Pinnick, A.N.G. Parra-Vasquez, V.A. Davis, H.K. Schmidt, R.H. Hauge, R.E. Smalley, M. Pasquali, J. Am. Chem. Soc. 128, 591–595 (2006)

    Article  Google Scholar 

  75. S. Ramesh, L.M. Ericson, V.A. Davis, R.K. Saini, C. Kittrell, M. Pasquali, W.E. Billups, W.W. Adams, R.H. Hauge, R.E. Smalley, Dissolution of pristine single walled carbon nanotubes in superacids by direct protonation. J. Phys. Chem. B 108, 8794–8798 (2004)

    Article  Google Scholar 

  76. V.A. Davis, A.N.G. Parra-Vasquez, M.J. Green, P.K. Rai, N. Behabtu, V. Prieto, R.D. Booker, J. Schmidt, E. Kesselman, W. Zhou, H. Fan, W.W. Adams, R.H. Hauge, J.E. Fischer, Y. Cohen, Y. Talmon, R.E. Smalley, M. Pasquali, True solutions of single-walled carbon nanotubes for assembly into macroscopic materials. Nature Nanotech. 4, 830–834 (2009)

    Article  ADS  Google Scholar 

  77. L.M. Ericson, H. Fan, H. Peng, H. Peng, V.A. Davis, W. Zhou, J. Sulpizio, Y. Wang, R. Booker, J. Vavro, C. Guthy, A.N.G. Parra-Vasquez, M.J. Kim, S. Ramesh, R.K. Saini, C. Kittrell, G. Lavin, H. Schmidt, W.W. Adams, W.E. Billups, M. Pasquali, W.-F. Hwang, R.H. Hauge, J.E. Fischer, R.E. Smalley, Macroscopic, neat, single-walled carbon nanotubes fiers. Science 305, 1447–1450 (2004)

    Article  ADS  Google Scholar 

  78. S. Badaire, C. Zakri, M. Maugey, A. Derre, J.N. Barisci, G. Wallace, P. Poulin, Liquid crystals of DNA-stabilized carbon nanotubes. Adv. Mater. 17, 1673–1676 (2005)

    Article  Google Scholar 

  79. C. Zamora-Ledezma, C. Blanc, M. Maugey, C. Zakri, P. Poulin, E. Anglaret, Anisotropic thin films of single wall carbon nanotubes from aligned lyotropic nematic suspensions. Nano Lett. 8, 4103–4107 (2008)

    Article  ADS  Google Scholar 

  80. N. Puech, C. Blanc, E. Grelet, C. Zamora-ledezma, M. Maugey, C. Zakri, E. Anglaret, P. Poulin, Highly ordered carbon nanotubes nematic liquid crystals. J. Phys. Chem. C 115, 3272–3278 (2011)

    Article  Google Scholar 

  81. N. Puech, E. Grelet, P. Poulin, C. Blanc, P. van der Schoot, Nematic droples in aqueous dispersions of carbon nanotubes. Phys. Rev. E 82(020702), 1–4 (2010)

    Google Scholar 

  82. S.E. Moulton, M. Maugey, P. Poulin, G.G. Wallace, Liquid crystal behavior of single-walled carbon nanotubes dispersed in biological hyaluronic acid solutions. J. Am. Chem. Soc. 129, 9452–9457 (2007)

    Article  Google Scholar 

  83. L. Lu, W. Chen, Large-scale aligned carbon nanotubes from their purified, highly concentrated suspension. ACS Nano 4, 1042–1048 (2010)

    Article  Google Scholar 

  84. G. Ao, D. Nepal, M. Aono, V.A. Davis, Cholesteric and nematic liquid crystalline phase behavior of double-stranded DNA stabilized single-walled carbon nanotubes dispersions. ACS Nano 5, 1450–1458 (2011)

    Article  Google Scholar 

  85. H.W. Lee, W. You, S. Barman, S. Hellstrom, M.C. Leieux, J.H. Oh, S. Liu, T. Fujiwara, W.M. Wang, B. Chen, Y.W. Jin, J.M. Kim, Z. Bao, Lyotropic liquid-crystalline solutions of high-concentration dispersions of single-walled carbon nanotubes with conjugated polymers. Small 5, 1019–1024 (2009)

    Article  Google Scholar 

  86. S. Meuer, L. Braun, R. Zentel, Solubilization of multi-walled carbon nanotubes by alpha-purene functionalized PMMA and their liquid crystalline self-organization. Chem. Commun. 3166–3168 (2008)

    Google Scholar 

  87. H. Ko, V.V. Tsukruk, Liquid-crystalline processing of highly oriented carbon nanotubes arrays for thin film transistors. Nano Lett. 6, 1443–1445 (2006)

    Article  ADS  Google Scholar 

  88. C. Jiang, A. Saha, C. Xiang, C.C. Young, J.M. Tour, M. Pasquali, A.A. Marti, Increased solubility, liquid-crystalline phase, and selective functionalization of single-walled carbon nanotubes polyelectrolyte dispersions. ACS Nano 7, 4503–4510 (2013)

    Article  Google Scholar 

  89. S. Kumar, H.K. Bisoyi, Aligned carbon nanotubes in the supramolecular order of discotic liquid crystals. Angew. Chem. Int. Ed. 46, 1501–1503 (2007)

    Article  Google Scholar 

  90. J.A.C. Veerman, D. Frenkel, Phase behavior of disklike hard-core mesogens. Phys. Rev. A 45, 5632–5648 (1992)

    Article  ADS  Google Scholar 

  91. A. Patti, S. Belli, R. van Roij, M. Dijkstra, Relaxation dynamics in the columnar liquid crystal phase of hard platelets. Soft Matter 7, 3533–3545 (2011)

    Article  ADS  Google Scholar 

  92. M.A. Bates, D. Frenkel, Nematic-isotropic transition in polydisperse systems of infinitely thin hard platelets. J. Chem. Phys. 110, 6553–6559 (1999)

    Article  ADS  Google Scholar 

  93. J.-C.P. Gabriel, F. Camerel, B.J. Lemaire, H. Desvaux, P. Davidson, P. Betail, Swollen liquid-crystalline lamellar phase based on extended solid-like sheets. Nature 413, 504–508 (2001)

    Article  ADS  Google Scholar 

  94. A.B.D. Brown, S.M. Clarke, A.R. Rennie, Ordered phase of platelike particles in concentrated dispersions. Langmuir 14, 3129–3132 (1998)

    Article  Google Scholar 

  95. S. Liu, J. Zhang, N. Wang, W. Liu, C. Zhang, D. Sun, Liquid-crystalline phases of colloidal dispersions of layered double hydroxide. Chem. Mater. 15, 3240–3241 (2003)

    Article  Google Scholar 

  96. N. Wang, S. Liu, J. Zhang, Z. Wu, J. Chen, D. Sun, Lamellar phase in colloidal suspensions of positively charged LDHs platelets. Soft Matter 1, 428–430 (2005)

    Article  ADS  Google Scholar 

  97. F.M. van der Kooij, H.N.W. Lekkerkerker, Formation of nematic liquid crystals in suspensions of hard colloidal platelets. J. Phys. Chem. B 102, 7829–7832 (1998)

    Article  Google Scholar 

  98. F.M. van der Kooij, K. Kassapidou, H.N.W. Lekkerkerker, Liquid crystal phase transitions in suspensions of polydisperse plate-like particles. Nature 406, 868–871 (2000)

    Article  ADS  Google Scholar 

  99. D. van der Beek, H.N.W. Lekkerkerker, Liquid crystal phases of charged colloidal platelets. Langmuir 20, 8582–8586 (2004)

    Article  Google Scholar 

  100. D. Kleshchanok, P. Holmqvist, J.-K. Meijer, H.N.W. Lekkerkerker, Lyotropic smectic B phase formed in suspensions of charged colloidal platelets. J. Am. Chem. Soc. 134, 5985–5990 (2012)

    Article  Google Scholar 

  101. A.E. Saunders, A. Ghezelbash, D. Smilgies, M.B. Sigman, B.A. Korgel, Columnar self-assembly of colloidal nanodisks. Nano Lett. 6, 2959–2963 (2006)

    Article  ADS  Google Scholar 

  102. W. Bryks, M. Wette, N. Velez, S.-W. Hsu, A.R. Tao, Supramolecular precursors for the synthesis of anisotropic Cu2S nanocrystals. J. Am. Chem. Soc. 136, 6175–6178 (2014)

    Article  Google Scholar 

  103. T. Paik, D.-K. Ko, T.R. Gordon, V. Doan-Nguyen, C.B. Murray, Studies of liquid crystalline self-assembly of GdF3 nanoplates by in-plane, out-of-plane SAXS. ACS Nano 5, 8322–8330 (2011)

    Article  Google Scholar 

  104. X. Wang, D. Zhao, A. Diaz, I.B.N. Medina, H. Wang, Z. Cheng, Thermo-sensitive discotic colloid liquid crystals. Soft Matter 10, 7692–7695 (2014)

    Article  ADS  Google Scholar 

  105. N. Behabtu, J.R. Lomeda, M.J. Green, A.L. Higginbotham, A. Sinitskii, D.V. Kosynkin, D. Tsentalovich, A.N.G. Parra-vasquez, J. Schmidt, E. Kesselman, Y. Cohen, Y. Talmon, J.M. Tour, M. Pasquali, Spontaneous high-concentration dispersions and liquid crystals of graphene. Nature Nanotech. 5, 406–411 (2010)

    Article  ADS  Google Scholar 

  106. J.E. Kim, T.H. Han, S.H. Lee, J.Y. Kim, C.W. Ahn, J.M. Yun, S.O. Kim, Graphene oxide liquid crystals. Angew. Chem. Int. Ed. 50, 3043–3047 (2011)

    Article  Google Scholar 

  107. Z. Xu, C. Gao, Aqueous liquid crystals of graphene oxide. ACS Nano 5, 2908–2915 (2011)

    Article  Google Scholar 

  108. Z. Xu, C. Gao, Graphene chiral liquid crystals and macroscopic assembled fibers. Nature Commun. 2(571), 1–9 (2011)

    Google Scholar 

  109. Z. Xu, H. Sun, X. Zhao, C. Gao, Ultastrong fibers assembled from giant graphene oxide sheets. Adv. Mater. 25, 188–193 (2013)

    Article  Google Scholar 

  110. Z. Liu, Z. Xu, X. Hu, C. Gao, Lyotropic liquid crystal of polyacrylonitrile-grafted graphene oxide and its assembled continuous nacre-mimetic fibers. Macromolecules 46, 6931–6941 (2013)

    Article  Google Scholar 

  111. B. Dan, N. Behabtu, A. Martinez, J.S. Evans, D.V. Kosynkin, J.M. Tour, M. Pasquali, I.I. Smalyukh, Liquid crystals of aqueous, giant grapheme oxide flakes. Soft Matter 7, 11154–11159 (2011)

    Article  ADS  Google Scholar 

  112. B. Senyuk, N. Behabtu, B.G. Pacheco, T. Lee, G. Ceriotti, J.M. Tour, M. Pasquali, I.I. Smalyukh, Nonlinear photoluminescence imaging of isotropic and liquid crystalline dispersions of graphene oxide. ACS Nano 6, 8060–8066 (2012)

    Article  Google Scholar 

  113. S.H. Aboutalebi, M.M. Gudarzi, Q.B. Zheng, J.-K. Kim, Spontaneous formation of liquid crystals in ultalarge graphene oxide dispersions. Adv. Funct. Mater. 21, 2978–2988 (2011)

    Article  Google Scholar 

  114. F. Guo, F. Kim, T.H. Han, V.B. Shenoy, J. Huang, R.H. Hurt, Hydration-Responsive Folding and unfolding in graphene oxide liquid crystal phases. ACS Nano 5, 8019–8025 (2011)

    Article  Google Scholar 

  115. Z. Zhu, G. Song, J. Liu, P.G. Whitten, L. Liu, H. Wang, Liquid crystalline behavior of graphene oxide in the formation and deformation of tough nanocomposite hydrogels. Langmuir 30, 14648–14657 (2014)

    Article  Google Scholar 

  116. C. Xiang, N. Behabtu, Y. Liu, H.G. Chae, C.C. Young, B. Genorio, D.E. Tsentalovich, C. Zhang, D.V. Kosynkin, J.R. Lomeda, C.-C. Hwang, S. Kumar, M. Pasquali, J.M. Tour, Graphene nanoribbons as an advanced precursor for making carbon fiber. ACS Nano 7, 1628–1637 (2013)

    Article  Google Scholar 

  117. T.-Z. Shen, S.-H. Hong, J.-K. Song, Electro-optical switching of graphene oxide liquid crystals with an extremely large Kerr coefficient. Nat. Mater. 13, 394–399 (2014)

    Article  ADS  Google Scholar 

  118. R. Jalili, S.H. Aboutalebi, D. Esrafilzadeh, K. Konstantinov, S.E. Moulton, J.M. Razal, G.G. Wallace, Organic solvent-based graphene oxide liquid crystals: a facile route toward the next generation of self-assembled layer-by-layer multifunctional 3D architectures. ACS Nano 7, 3981–3990 (2013)

    Article  Google Scholar 

  119. R. Jalili, S.H. Aboutalebi, D. Esrafilzadeh, R.L. Shepherd, J. Chen, S. Aminorroaya-Yamini, K. Konstantinov, A.I. Minett, J.M. Razal, G.G. Wallace, Scalable, one-step wet-spinning of graphene fibers and yarns from liquid crystalline dispersions of graphene oxide: Towards multifunctional textiles. Adv. Funct. Mater. 23, 5345–5354 (2013)

    Article  Google Scholar 

  120. S.H. Aboutalebi, R. Jalili, D. Esrafilzadeh, M. Salari, Z. Gholamvand, S.A. Yamini, K. Konstantinov, R.L. Shepherd, J. Chen, S.E. Moulton, P.C. Innis, A.I. Minett, J.M. Razal, G.G. Wallace, High-Performance multifunctional graphene yarns: towards wearable all-carbon energy storage textiles. ACS Nano 8, 2456–2466 (2014)

    Article  Google Scholar 

  121. M.Z. Seyedin, J.M. Razal, P.C. Innis, R. Jalili, G.G. Wallace, Achieving outstanding mechanical performance in reinforced elastomeric composite fibers using large sheets of graphene oxide. Adv. Funct. Mater. 25, 94–104 (2014)

    Article  Google Scholar 

  122. P. Li, M. Wong, X. Zhang, H. Yao, R. Ishige, A. Takahara, M. Miyamoto, R. Nishimura, H.-J. Sue, Tunable lyotropic photonic liquid crystal based on graphene oxide. ACS Photonics 1, 79–86 (2014)

    Article  Google Scholar 

  123. X. Lei, Z. Xu, H. Sun, S. Wang, C. Griesinger, L. Peng, C. Gao, R.X. Tan, Graphene oxide liquid crystals as a versatile and tunable alignment medium for the measurement of residual dipolar couplings in organic solvents. J. Am. Chem. Soc. 136, 11280–11283 (2014)

    Article  Google Scholar 

  124. K.E. Lee, J.E. Kim, U.N. Maiti, J. Lim, J.O. Hwang, J. Shim, J.J. Oh, T. Yun, S.O. Kim, Liquid crystal size selection of large-size graphene oxide for size-dependent N-doped and oxygen reduction catalysis. ACS Nano 8, 9073–9080 (2014)

    Article  Google Scholar 

  125. C. Zamora-Ledezma, N. Puech, C. Zakri, E. Grelet, S.E. Moulton, G.G. Wallace, S. Gambhir, C. Blanc, E. Anglaret, P. Poulin, Liquid crystallinity and dimensions of surfactant-stabilized sheets of reduced graphene oxide. J. Phys. Chem. Lett. 3, 2425–2430 (2012)

    Article  Google Scholar 

  126. L. Tong, W. Qi, M. Wang, R. Huang, R. Su, Z. He, Long-range ordered graphite oxide liquid crystals. Chem. Commun. 50, 7776–7779 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

The preparation of this chapter benefited from the support to Quan Li by US Air Force Office of Scientific Research (AFOSR), US Department of Energy (DOE), US Army Research Office (ARO), US Department of Defense Multidisciplinary University Research Initiative (DoD MURI), US National Aeronautics and Space Administration (NASA), and US National Science Foundation (NSF), and Ohio Third Frontier.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bisoyi, H.K., Li, Q. (2015). Liquid Crystalline Anisotropic Nanoparticles: From Metallic and Semiconducting Nanoparticles to Carbon Nanomaterials. In: Li, Q. (eds) Anisotropic Nanomaterials. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-18293-3_6

Download citation

Publish with us

Policies and ethics