Skip to main content

Testing the Motion of Strongly Self-Gravitating Bodies with Radio Pulsars

  • Chapter
  • First Online:
Equations of Motion in Relativistic Gravity

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 179))

Abstract

Before the 1970s, precision tests for gravity theories were constrained to the weak-field environment of the Solar System. In terms of relativistic equations of motion, the Solar System gave access to the first order corrections to Newtonian dynamics. Testing anything beyond the first post-Newtonian contributions was for a long time out of reach. The discovery of the first binary pulsar by Russell Hulse and Joseph Taylor in the summer of 1974 initiated a completely new field for testing the relativistic dynamics of gravitationally interacting bodies. For the first time the back reaction of gravitational wave emission on the binary motion could be studied. Furthermore, the Hulse-Taylor pulsar provided the first test bed for the orbital dynamics of strongly self-gravitating bodies. To date, there are a number of binary pulsars known which can be utilized to test different aspects of relativistic dynamics. So far GR has passed these tests with flying colors, while many alternative theories, like scalar-tensor gravity, are tightly constraint by now. This article gives an introduction to gravity tests with pulsars, and summarizes some of the most important results. Furthermore, it gives a brief outlook into the future of this exciting field of experimental gravity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Gravitational wave damping has also been observed in a double white-dwarf system, which has an orbital period of just 13 min [19]. This experiment combines gravity regimes G1 (note, \(v/c \sim 3 \times 10^{-3}\)) and GW of Fig. 1.

  2. 2.

    The PPN formalism uses 10 parameters to parametrize in a generic way deviations from GR at the post-Newtonian level, within the class of metric gravity theories (see [5] for details).

  3. 3.

    The mono-scalar-tensor theories \(T_1(\alpha _0,\beta _0)\) of [56, 57] have a conformal coupling function \(A(\varphi ) = \alpha _0 (\varphi - \varphi _0) + \beta _0 (\varphi - \varphi _0)^2/2\). The Jordan-Fierz-Brans-Dicke gravity is the sub-class with \(\beta _0 = 0\), and \(\alpha _0^2 = (2\omega _\mathrm{BD} + 3)^{-1}\).

  4. 4.

    Strictly speaking, this is the total mass of the system scaled with an unknown Doppler factor \(D\), i.e. \(M^\mathrm{observed} = D^{-1} M^\mathrm{intrinsic}\) [39]. For typical velocities, \(D - 1\) is expected to be of order \(10^{-4}\), see for instance [64]. In gravity tests based on post-Keplerian parameters, the factor \(D\) drops out and is therefore irrelevant [54].

  5. 5.

    From the Cassini experiment [11] one obtains \(|\alpha _0| < 3 \times 10^{-3}\) (95 % confidence).

  6. 6.

    These numbers are based on the equation of state MPA1 in [82]. Within GR, MPA1 has a maximum neutron-star mass of \(2.46\,M_\odot \), which can also account for the high-mass candidates of [8385].

  7. 7.

    The first well determined two Solar mass neutron star is PSR J1614\(-\)2230 [90], which is in a wide orbit and therefore does not provide any gravity test.

  8. 8.

    The light-cylinder is defined as the surface where the co-rotating frame reaches the speed of light.

  9. 9.

    It has been suggested to use the orbital period of binary pulsars to test for gravitational waves of considerably longer wavelength [129, 130].

References

  1. A. Einstein, Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften (Berlin), pp. 844–847 (1915)

    Google Scholar 

  2. A. Einstein, Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften (Berlin), pp. 831–839 (1915)

    Google Scholar 

  3. H. Seeliger, Astronomische Nachrichten 201, 273 (1915)

    ADS  Google Scholar 

  4. A. Einstein, Annalen der Physik 354, 769–822 (1916)

    ADS  Google Scholar 

  5. C.M. Will, Theory and Experiment in Gravitational Physics, 2nd edn. (Cambridge University Press, Cambridge, 1993)

    Google Scholar 

  6. F.W. Dyson, A.S. Eddington, C. Davidson, R. Soc. Lond. Philos. Trans. Ser. A 220, 291–333 (1920)

    ADS  Google Scholar 

  7. M. Froeschle, F. Mignard, F. Arenou, in Hipparcos—Venice’97, vol. 402, ed. by R.M. Bonnet, E. Høg, P.L. Bernacca, et al. (ESA Special Publication, The Netherlands, 1997), pp. 49–52

    Google Scholar 

  8. S.S. Shapiro, J.L. Davis, D.E. Lebach, J.S. Gregory, Phys. Rev. Lett. 92, 121101 (2004)

    ADS  Google Scholar 

  9. E. Fomalont, S. Kopeikin, G. Lanyi, J. Benson, Astrophys. J. 699, 1395–1402 (2009)

    ADS  Google Scholar 

  10. I.I. Shapiro, Phys. Rev. Lett. 13, 789–791 (1964)

    ADS  MathSciNet  Google Scholar 

  11. B. Bertotti, L. Iess, P. Tortora, Nature 425, 374–376 (2003)

    ADS  Google Scholar 

  12. K. Nordtvedt, Class. Quantum Gravity 16, A101–A112 (1999)

    ADS  MathSciNet  Google Scholar 

  13. C.W.F. Everitt, D.B. Debra, B.W. Parkinson et al., Phys. Rev. Lett. 106, 221101 (2011)

    ADS  Google Scholar 

  14. I. Ciufolini, E.C. Pavlis, Nature 431, 958–960 (2004)

    ADS  Google Scholar 

  15. A. Einstein, Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften (Berlin), pp. 688–696 (1916)

    Google Scholar 

  16. A. Einstein, Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften (Berlin), pp. 154–167 (1918)

    Google Scholar 

  17. D. Kennefick, Traveling at the Speed of Thought: Einstein and the Quest for Gravitational Waves, (Princeton University Press, Princeton, 2007)

    Google Scholar 

  18. R.A. Hulse, J.H. Taylor, Astrophys. J. 195, L51–L53 (1975)

    ADS  Google Scholar 

  19. J.J. Hermes, M. Kilic, W.R. Brown et al., Astrophys. J. 757, L21 (2012)

    ADS  Google Scholar 

  20. A. Hewish, S.J. Bell, J.D.H. Pilkington et al., Nature 217, 709–713 (1968)

    ADS  Google Scholar 

  21. R.N. Manchester, G.B. Hobbs, A. Teoh, M. Hobbs, Astrophys. J. 129, 1993–2006 (2005). http://www.atnf.csiro.au/research/pulsar/psrcat/

  22. D.R. Lorimer, Living Rev. Relativ, 8 (2005). http://www.livingreviews.org/lrr-2005-7

  23. G. Hobbs, W. Coles, R.N. Manchester et al., Mon. Not. R. Astron. Soc. 427, 2780–2787 (2012)

    ADS  Google Scholar 

  24. I.H. Stairs, Living Rev. Relativ. 6 (2003). http://www.livingreviews.org/lrr-2003-5

  25. D.R. Lorimer, M. Kramer, Handbook of Pulsar Astronomy, (Cambridge University Press, Cambridge, 2004)

    Google Scholar 

  26. R.T. Edwards, G.B. Hobbs, R.N. Manchester, Mon. Not. R. Astron. Soc. 372, 1549–1574 (2006)

    ADS  Google Scholar 

  27. J.P.W. Verbiest, M. Bailes, W. van Straten et al., Astrophys. J. 679, 675–680 (2008)

    ADS  Google Scholar 

  28. P.C.C. Freire, N. Wex, G. Esposito-Farèse et al., Mon. Not. R. Astron. Soc. 423, 3328–3343 (2012)

    ADS  Google Scholar 

  29. J.M. Weisberg, D.J. Nice, J.H. Taylor, Astrophys. J. 722, 1030–1034 (2010)

    ADS  Google Scholar 

  30. P.C.C. Freire, C.G. Bassa, N. Wex et al., Mon. Not. R. Astron. Soc. 412, 2763–2780 (2011)

    ADS  Google Scholar 

  31. A.W. Hotan, M. Bailes, S.M. Ord, Mon. Not. R. Astron. Soc. 369, 1502–1520 (2006)

    ADS  Google Scholar 

  32. D.J. Champion, G.B. Hobbs, R.N. Manchester et al., Astrophys. J. 720, L201–L205 (2010)

    ADS  Google Scholar 

  33. M. Kramer, Proc. Int. Astron. Union 8, 19–26 (2012)

    Google Scholar 

  34. T. Damour, in Three Hundred Years of Gravitation, ed. by S.W. Hawking, W. Israel (Cambridge University Press, Cambridge, 1987), pp. 128–198

    Google Scholar 

  35. L. Blanchet, Living Rev. Relativ. 9, 4 (2006)

    ADS  Google Scholar 

  36. T. Futamase, Y. Itoh, Living Rev. Relativ. 10 (2007). http://www.livingreviews.org/lrr-2007-2

  37. T. Damour, in Gravitational Radiation, ed. by N. Deruelle, T. Piran (North-Holland, Amsterdam, 1983), pp. 59–144

    Google Scholar 

  38. J.-M. Gérard, Y. Wiaux, Phys. Rev. D 66, 024040 (2002)

    ADS  Google Scholar 

  39. T. Damour, J.H. Taylor, Phys. Rev. D 45, 1840–1868 (1992)

    ADS  Google Scholar 

  40. T. Damour, in Astrophysics and Space Science Library, vol. 359, ed. by M. Colpi, P. Casella, V. Gorini, U. Moschella, A. Possenti (Springer, New York, 2009), pp. 1–41

    Google Scholar 

  41. T. Damour, N. Deruelle, Ann. Inst. Henri Poincaré Phys. Théor. 43, 107–132 (1985)

    Google Scholar 

  42. T. Damour, G. Esposito-Farèse, Phys. Rev. D 53, 5541–5578 (1996)

    ADS  MathSciNet  Google Scholar 

  43. S. Mirshekari, C.M. Will, Phys. Rev. D 87, 084070 (2013)

    ADS  Google Scholar 

  44. B.M. Barker, R.F. O’Connell, Phys. Rev. D 12, 329–335 (1975)

    ADS  Google Scholar 

  45. V.A. Brumberg, Essential Relativistic Celestial Mechanics, (Adam Hilger, Bristol, 1991)

    Google Scholar 

  46. J. Hartung, J. Steinhoff, G. Schäfer, Annalen der Physik 525, 359–394 (2013)

    ADS  MathSciNet  Google Scholar 

  47. N. Wex, Class. Quantum Gravity 12, 983–1005 (1995)

    ADS  MathSciNet  Google Scholar 

  48. T. Damour, C. R. Acad. Sci. Paris Sér. II 294, 1355–1357 (1982)

    Google Scholar 

  49. D.E. Lebach, B.E. Corey, I.I. Shapiro et al., Phys. Rev. Lett. 75, 1439–1442 (1995)

    ADS  Google Scholar 

  50. T. Damour, G. Schäfer, Nuovo Cimento B 101, 127 (1988)

    ADS  Google Scholar 

  51. T. Damour, R. Ruffini, Academie des Sciences Paris Comptes Rendus Serie Sciences Mathematiques 279, 971–973 (1974)

    ADS  Google Scholar 

  52. G. Börner, J. Ehlers, E. Rudolph, Astron. Astrophys. 44, 417–420 (1975)

    ADS  Google Scholar 

  53. T. Damour, in Proceedings of the 2nd Canadian Conference on General Relativity and Relativistic Astrophysics, ed. by A. Coley, C. Dyer, T. Tupper, (University of Toronto, 1988), pp. 315–334

    Google Scholar 

  54. T. Damour, N. Deruelle, Ann. Inst. Henri Poincaré Phys. Théor. 44, 263–292 (1986)

    Google Scholar 

  55. M. Ali, Master thesis, University of Bonn, Germany (2011)

    Google Scholar 

  56. T. Damour, G. Esposito-Farèse, Phys. Rev. Lett. 70, 2220–2223 (1993)

    ADS  Google Scholar 

  57. T. Damour, G. Esposito-Farèse, Phys. Rev. D 54, 1474–1491 (1996)

    ADS  Google Scholar 

  58. D.M. Eardley, Astrophys. J. 196, L59–L62 (1975)

    ADS  Google Scholar 

  59. C.M. Will, Astrophys. J. 214, 826–839 (1977)

    ADS  Google Scholar 

  60. P.C. Peters, Phys. Rev. 136, B1224–B1232 (1964)

    ADS  Google Scholar 

  61. V.A. Brumberg, I.B. Zeldovich, I.D. Novikov, N.I. Shakura, Sov. Astron. Lett. 1, 2–4 (1975)

    ADS  Google Scholar 

  62. R.V. Wagoner, Astrophys. J. 196, L63–L65 (1975)

    ADS  Google Scholar 

  63. J.H. Taylor, R.A. Hulse, L.A. Fowler et al., Astrophys. J. 206, L53–L58 (1976)

    ADS  Google Scholar 

  64. N. Wex, V. Kalogera, M. Kramer, Astrophys. J. 528, 401–409 (2000)

    ADS  Google Scholar 

  65. R. Blandford, S.A. Teukolsky, Astrophys. J. 198, L27–L29 (1975)

    ADS  Google Scholar 

  66. J.H. Taylor, L.A. Fowler, P.M. McCulloch, Nature 277, 437–440 (1979)

    ADS  Google Scholar 

  67. I.S. Shklovskii, Sov. Astron. 13, 562–565 (1970)

    ADS  Google Scholar 

  68. T. Damour, J.H. Taylor, Astrophys. J. 366, 501–511 (1991)

    ADS  Google Scholar 

  69. J.M. Weisberg, S. Stanimirović, K. Xilouris et al., Astrophys. J. 674, 286–294 (2008)

    ADS  Google Scholar 

  70. M. Burgay, N. D’Amico, A. Possenti et al., Nature 426, 531–533 (2003)

    ADS  Google Scholar 

  71. A.G. Lyne, M. Burgay, M. Kramer et al., Science 303, 1153–1157 (2004)

    ADS  Google Scholar 

  72. M. Kramer, N. Wex, Class. Quantum Gravity 26, 073001 (2009)

    ADS  Google Scholar 

  73. M. Kramer, I.H. Stairs, Annu. Rev. Astron. Astrophys. 46, 541–572 (2008)

    ADS  Google Scholar 

  74. M. Kramer, I.H. Stairs, R.N. Manchester et al., Science 314, 97–102 (2006)

    ADS  Google Scholar 

  75. R. Blandford, S.A. Teukolsky, Astrophys. J. 205, 580–591 (1976)

    ADS  Google Scholar 

  76. A.T. Deller, M. Bailes, S.J. Tingay, Science 323, 1327–1329 (2009)

    ADS  Google Scholar 

  77. J.P.W. Verbiest, M. Bailes, W.A. Coles et al., Mon. Not. R. Astron. Soc. 400, 951–968 (2009)

    ADS  Google Scholar 

  78. E.S. Phinney, R. Soc. Lond. Philos. Trans. Ser. A 341, 39–75 (1992)

    ADS  Google Scholar 

  79. M.F. Ryba, J.H. Taylor, Astrophys. J. 371, 739–748 (1991)

    ADS  Google Scholar 

  80. B.A. Jacoby, Ph.D. thesis, California Institute of Technology, California, USA (2005)

    Google Scholar 

  81. J. Antoniadis, M.H. van Kerkwijk, D. Koester et al., Mon. Not. R. Astron. Soc. 423, 3316–3327 (2012)

    ADS  Google Scholar 

  82. H. Müther, M. Prakash, T.L. Ainsworth, Phys. Lett. B 199, 469–474 (1987)

    ADS  Google Scholar 

  83. P.C.C. Freire, S.M. Ransom, S. Bégin et al., Astrophys. J. 675, 670–682 (2008)

    ADS  Google Scholar 

  84. M.H. van Kerkwijk, R.P. Breton, S.R. Kulkarni, Astrophys. J. 728, 95 (2011)

    ADS  Google Scholar 

  85. R.W. Romani, A.V. Filippenko, J.M. Silverman et al., Astrophys. J. 760, L36 (2012)

    ADS  Google Scholar 

  86. I.H. Stairs, S.E. Thorsett, J.H. Taylor, A. Wolszczan, Astrophys. J. 581, 501–508 (2002)

    ADS  Google Scholar 

  87. J. Boyles, R.S. Lynch, S.M. Ransom et al., Astrophys. J. 763, 80 (2013)

    ADS  Google Scholar 

  88. R.S. Lynch, J. Boyles, S.M. Ransom et al., Astrophys. J. 763, 81 (2013)

    ADS  Google Scholar 

  89. J. Antoniadis, P.C.C. Freire, N. Wex et al., Science 340, 448 (2013)

    ADS  Google Scholar 

  90. P.B. Demorest, T. Pennucci, S.M. Ransom et al., Nature 467, 1081–1083 (2010)

    ADS  Google Scholar 

  91. D. Hobbs, B. Holl, L. Lindegren et al., Proc. Int. Astron. Union 5, 315–319 (2009)

    Google Scholar 

  92. N.D.H. Dass, V. Radhakrishnan, Astrophys. J. 16, L135–L139 (1975)

    ADS  Google Scholar 

  93. J.M. Weisberg, R.W. Romani, J.H. Taylor, Astrophys. J. 347, 1030–1033 (1989)

    ADS  Google Scholar 

  94. M. Kramer, Astrophys. J. 509, 856–860 (1998)

    ADS  Google Scholar 

  95. I.H. Stairs, S.E. Thorsett, Z. Arzoumanian, Phys. Rev. Lett. 93, 141101 (2004)

    ADS  Google Scholar 

  96. J.M. Weisberg, J.H. Taylor, Astrophys. J. 576, 942–949 (2002)

    ADS  Google Scholar 

  97. R.N. Manchester, M. Kramer, I.H. Stairs et al., Astrophys. J. 710, 1694–1709 (2010)

    ADS  Google Scholar 

  98. G. Desvignes, M. Kramer, I. Cognard et al., Proc. Int. Astron. Union 8, 199–202 (2012)

    Google Scholar 

  99. R.P. Breton, V.M. Kaspi, M. Kramer et al., Science 321, 104–107 (2008)

    ADS  Google Scholar 

  100. M.A. McLaughlin, A.G. Lyne, D.R. Lorimer et al., Astrophys. J. 616, L131–L134 (2004)

    ADS  Google Scholar 

  101. B.B.P. Perera, M.A. McLaughlin, M. Kramer et al., Astrophys. J. 721, 1193–1205 (2010)

    ADS  Google Scholar 

  102. R.D. Ferdman, I.H. Stairs, M. Kramer et al., Astrophys. J. 767, 85 (2013)

    ADS  Google Scholar 

  103. G. Hinshaw, J.L. Weiland, R.S. Hill et al., Astrophys. J. Suppl. 180, 225–245 (2009)

    ADS  Google Scholar 

  104. J. Müller, J.G. Williams, S.G. Turyshev, Astrophysics and space science library, in Lasers, Clocks and Drag-Free Control: Exploration of Relativistic Gravity in Space, vol. 349, ed. by H. Dittus, C. Lammerzahl, S.G. Turyshev (Springer, Berlin, 2008), pp. 457–472

    Google Scholar 

  105. K. Nordtvedt, Astrophys. J. 320, 871–874 (1987)

    ADS  Google Scholar 

  106. T. Damour, G. Esposito-Farèse, Phys. Rev. D 46, 4128–4132 (1992)

    ADS  Google Scholar 

  107. L. Shao, N. Wex, Class. Quantum Gravity 29, 215018 (2012)

    ADS  Google Scholar 

  108. T. Damour, G. Schäfer, Phys. Rev. Lett. 66, 2549–2552 (1991)

    ADS  Google Scholar 

  109. P.J. Callanan, P.M. Garnavich, D. Koester, Mon. Not. R. Astron. Soc. 298, 207–211 (1998)

    ADS  Google Scholar 

  110. K. Lazaridis, N. Wex, A. Jessner et al., Mon. Not. R. Astron. Soc. 400, 805–814 (2009)

    ADS  Google Scholar 

  111. D.C. Backer, S.R. Kulkarni, C. Heiles et al., Nature 300, 615–618 (1982)

    ADS  Google Scholar 

  112. L. Shao, R.N. Caballero, M. Kramer et al., Class. Quantum Gravity 30, 165019 (2013)

    ADS  Google Scholar 

  113. S. Weinreb, J. Bardin, H. Mani, G. Jones, Rev. Sci. Instrum. 80, 044702 (2009)

    ADS  Google Scholar 

  114. L. Blanchet, G. Schäfer, Mon. Not. R. Astron. Soc. 239, 845–867 (1989)

    ADS  Google Scholar 

  115. L. Blanchet, G. Schäfer, Mon. Not. R. Astron. Soc. 242, 704 (1990)

    ADS  Google Scholar 

  116. R. Nan, D. Li, C. Jin et al., Int. J. Mod. Phys. D 20, 989–1024 (2011)

    ADS  Google Scholar 

  117. A.R. Taylor, Proc. Int. Astron. Union 8, 337–341 (2012)

    Google Scholar 

  118. R. Smits, M. Kramer, B. Stappers et al., Astron. Astrophys. 493, 1161–1170 (2009)

    ADS  Google Scholar 

  119. R. Smits, S.J. Tingay, N. Wex et al., Astron. Astrophys. 528, A108 (2011)

    ADS  Google Scholar 

  120. M.A.C. Perryman, K.S. de Boer, G. Gilmore et al., Astron. Astrophys. 369, 339–363 (2001)

    ADS  Google Scholar 

  121. S.M. Ransom, J.M. Cordes, S.S. Eikenberry, Astrophys. J. 589, 911–920 (2003)

    ADS  Google Scholar 

  122. B. Allen, B. Knispel, J.M. Cordes et al., Astrophys. J. 773, 91 (2013)

    ADS  Google Scholar 

  123. N. Wex, S.M. Kopeikin, Astrophys. J. 514, 388–401 (1999)

    ADS  Google Scholar 

  124. K. Liu, Ph.D. thesis, University of Manchester, UK (2012)

    Google Scholar 

  125. N. Wex, K. Liu, R.P. Eatough et al., Proc. Int. Astron. Union 8, 171–176 (2012)

    Google Scholar 

  126. K. Liu, N. Wex, M. Kramer et al., Astrophys. J. 747, 1 (2012)

    ADS  Google Scholar 

  127. R.P. Eatough, H. Falcke, R. Karuppusamy, et al., Nature (2013), in press arXiv:1308.3147

  128. G. Hobbs, A. Archibald, Z. Arzoumanian et al., Class. Quantum Gravity 27, 084013 (2010)

    ADS  Google Scholar 

  129. B. Bertotti, B.J. Carr, M.J. Rees, Mon. Not. R. Astron. Soc. 203, 945–954 (1983)

    ADS  Google Scholar 

  130. S.M. Kopeikin, Phys. Rev. D 56, 4455–4469 (1997)

    ADS  Google Scholar 

  131. F.B. Estabrook, H.D. Wahlquist, Gen. Relativ. Gravit. 6, 439–447 (1975)

    ADS  Google Scholar 

  132. S. Detweiler, Astrophys. J. 234, 1100–1104 (1979)

    ADS  Google Scholar 

  133. A. Sesana, A. Vecchio, C.N. Colacino, Mon. Not. R. Astron. Soc. 390, 192–209 (2008)

    ADS  Google Scholar 

  134. A. Sesana, A. Vecchio, M. Volonteri, Mon. Not. R. Astron. Soc. 394, 2255–2265 (2009)

    ADS  Google Scholar 

  135. K.J. Lee, F.A. Jenet, R.H. Price, Astrophys. J. 685, 1304–1319 (2008)

    ADS  Google Scholar 

  136. K.J. Lee, F.A. Jenet, R.H. Price et al., Astrophys. J. 722, 1589–1597 (2010)

    ADS  Google Scholar 

  137. F.A. Jenet, A. Lommen, S.L. Larson, L. Wen, Astrophys. J. 606, 799–803 (2004)

    ADS  Google Scholar 

Download references

Acknowledgments

I would like to thank the workshop organizers for their hospitality, and John Antoniadis for carefully reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert Wex .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wex, N. (2015). Testing the Motion of Strongly Self-Gravitating Bodies with Radio Pulsars. In: Puetzfeld, D., Lämmerzahl, C., Schutz, B. (eds) Equations of Motion in Relativistic Gravity. Fundamental Theories of Physics, vol 179. Springer, Cham. https://doi.org/10.1007/978-3-319-18335-0_20

Download citation

Publish with us

Policies and ethics