Skip to main content

Some Operator Bounds Employing Complex Interpolation Revisited

  • Conference paper
  • First Online:
Operator Semigroups Meet Complex Analysis, Harmonic Analysis and Mathematical Physics

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 250))

Abstract

We revisit and extend known bounds on operator-valued functions of the type

$$T^{-Z}_{1}ST^{-1+z}_{2},\;z\in\bar{\Sigma}\;=\;\left\{z\in\mathbb{C}|\mathrm{Re}{z}\in[0,1]\right\}$$

under various hypotheses on the linear operators S and Tj , j = 1, 2. We particularly single out the case of self-adjoint and sectorial operators Tj in some separable complex Hilbert space \(\mathcal{H}_{j},j\;=\;1,2,\) and suppose that S (resp., S*) is a densely defined closed operator mapping dom \((S)\subseteq \mathcal{H}_{1}\; \mathrm{into}\;\mathcal{H}_{2}\;(\mathrm{resp.}, \mathrm{dom}(S^{*})\subseteq \mathcal{H}_{2}\;\mathrm{into}\;\mathcal{H}_{1}\), relatively bounded with respect to \(T_{1}\;(\mathrm{resp.,}\;T^{*}_{2})\). Using complex interpolation methods, a generalized polar decomposition for S, and (a variant of) the Loewner–Heinz inequality, the bounds we establish lead to inequalities of the following type: Given \(k\;\in\;(0,\infty)\),

$$\|\overline{T^{-Z}_{1}ST^{-1+z}_{2}}\|_{\mathcal{B}(\mathcal{H}_{1},\mathcal{H}_{2})}\;\leq\;N_{1}N{2}e^{k(\mathrm{Im}(z))^2+k\; \mathrm{Re}(z)[1-\mathrm{Re}(z)]+(4k)^{-1}(\theta_{1}+\theta_{2})^2} \times\|ST^{-1}_{1}\|^{1-{\mathrm{Re}}(z)}_{\mathcal{B}(\mathcal{H_{1},\mathcal{H}_{2}})}\|S^{*}(T^{*}_{2})^{-1}\|^{{\mathrm{Re}}(z)}_{\mathcal{B}(\mathcal{H_{2},\mathcal{H}_{1}})},\qquad z\in\bar{\bar{\Sigma}}$$

which also implies,

$$\|\overline{T^{-Z}_{1}ST^{-1+z}_{2}}\|_{\mathcal{B}(\mathcal{H}_{1},\mathcal{H}_{2})}\;\leq\;N_{1}N{2}e^{(\theta_{1}+\theta_{2})[x(1-x)]^{1/2}} \times\|ST^{-1}_{1}\|^{1-{x}_{\mathcal{B}(\mathcal{H_{1},\mathcal{H}_{2}})}\|S^{*}(T^{*}_{2})^{-1}\|^{x}_{\mathcal{B}(\mathcal{H_{2},\mathcal{H}_{1}})},\qquad x\in[0,1]}$$

assuming that T j have bounded imaginary powers, that is, for some \(N_{j}\geqslant\;1\mathrm{and}\;\theta\;\geqslant\;0\),

$$\|T^{is}_{j}\|_\mathcal{B(H)}\;\leq\;N_{j}e^{\theta_{j}|s|},\quad s\in\mathbb{R}, j\;=\;1,2$$

. We also derive analogous bounds with \(\mathcal{B}(\mathcal{H}_{1},\mathcal{H}_{2})\) replaced by trace ideals, \(\mathcal{B}_{p}(\mathcal{H}_{1},\mathcal{H}_{2}),\;p\;\in\;[1,\infty)\). The methods employed are elementary, predominantly relying on Hadamard’s three-lines theorem and the Loewner–Heinz inequality.

Mathematics Subject Classification (2010). Primary 47A57, 47B10, 47B44; Secondary 47A30, 47B25

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fritz Gesztesy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Gesztesy, F., Latushkin, Y., Sukochev, F., Tomilov, Y. (2015). Some Operator Bounds Employing Complex Interpolation Revisited. In: Arendt, W., Chill, R., Tomilov, Y. (eds) Operator Semigroups Meet Complex Analysis, Harmonic Analysis and Mathematical Physics. Operator Theory: Advances and Applications, vol 250. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-18494-4_14

Download citation

Publish with us

Policies and ethics