Skip to main content

Abstract

In recent work, several popular segmentation methods have been unified as energy minimization on a graph. In other work, supervised learning methods have been generalized from predicting labels to predicting structured, graph-like objects. A recent contribution to this second area showed how the Rand Index could be directly minimized when using Connected Components as a segmentation method. We build on this work and present an efficient mini-batch learning method for Connected Component segmentation and also show how it can be generalized to the Watershed Cuts segmentation method. We present initial results applying these new contributions to image segmentation problems in materials microscopy and discuss challenges and future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lafferty, J.D., McCallum, A., Pereira, F.C.N.: Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data. In: Proceedings of the Eighteenth International Conference on Machine Learning, pp. 282–289. Morgan Kaufmann Publishers Inc. (2001)

    Google Scholar 

  2. Farabet, C., et al.: Learning Hierarchical Features for Scene Labeling. IEEE Transactions on Pattern Analysis and Machine Intelligence 35(8), 1915–1929 (2013)

    Article  Google Scholar 

  3. Arbelaez, P., et al.: Contour Detection and Hierarchical Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 33(5), 898–916 (2011)

    Article  Google Scholar 

  4. Fowlkes, C., Martin, D., Malik, J.: Learning Affinity Functions for Image Segmentation: Combining Patch-based and Gradient-based Approaches. In: CVPR 2003, Madison, WI (2003)

    Google Scholar 

  5. Bansal, N., Blum, A., Chawla, S.: Correlation Clustering: Theoretical Advances in Data Clustering (Guest Editors: Nina Mishra and Rajeev Motwani). Machine Learning 56(1-3), 89-113 (2004)

    Google Scholar 

  6. Couprie, C., et al.: Power Watershed: A Unifying Graph-Based Optimization Framework. IEEE Transactions on Pattern Analysis and Machine Intelligence 33(7), 1384–1399 (2011)

    Article  Google Scholar 

  7. Cousty, J., et al.: Watershed cuts: minimum spanning forests and the drop of water principle. IEEE Trans. Pattern Anal. Mach. Intell. 31(8), 1362–1374 (2009)

    Article  Google Scholar 

  8. Finley, T., Joachims, T.: Supervised clustering with support vector machines. In: Proceedings of the 22nd International Conference on Machine Learning, pp. 217–224. ACM, Bonn (2005)

    Google Scholar 

  9. Turaga, S.C., et al.: Maximin affinity learning of image segmentation. In: NIPS (2009)

    Google Scholar 

  10. Cousty, J., et al.: Watershed Cuts: Thinnings, Shortest Path Forests, and Topological Watersheds. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(5), 925–939 (2010)

    Article  Google Scholar 

  11. Najman, L., Cousty, J., Perret, B.: Playing with Kruskal: Algorithms for Morphological Trees in Edge-Weighted Graphs. In: Hendriks, C.L.L., Borgefors, G., Strand, R. (eds.) ISMM 2013. LNCS, vol. 7883, pp. 135–146. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  12. Shalev-Shwartz, S., Singer, Y., Srebro, N.: Pegasos: Primal Estimated sub-GrAdient SOlver for SVM. In: Proceedings of the Twenty-Fourth International Conference on Machine Learning, ICML (2007)

    Google Scholar 

  13. Coates, A., Ng, A.Y.: Learning Feature Representations with K-Means. In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade, 2nd edn. LNCS, vol. 7700, pp. 561–580. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  14. Mangan, A.P., Whitaker, R.T.: Partitioning 3D surface meshes using watershed segmentation. IEEE Transactions on Visualization and Computer Graphics 5(4), 308–321 (1999)

    Article  Google Scholar 

  15. Beucher, S.: Hierarchical Segmentation and Waterfall Algorithm. In: Serra, J., Soille, P. (eds.) Mathematical Morphology and Its Applications to Image Processing, pp. 69–76. Springer, Netherlands (1994)

    Chapter  Google Scholar 

  16. Fan, R.-E., et al.: LIBLINEAR: A Library for Large Linear Classification. Journal of Machine Learning Research 9, 1871–1874 (2008)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reid Porter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Porter, R., Oyen, D., Zimmer, B.G. (2015). Learning Watershed Cuts Energy Functions. In: Benediktsson, J., Chanussot, J., Najman, L., Talbot, H. (eds) Mathematical Morphology and Its Applications to Signal and Image Processing. ISMM 2015. Lecture Notes in Computer Science(), vol 9082. Springer, Cham. https://doi.org/10.1007/978-3-319-18720-4_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18720-4_42

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18719-8

  • Online ISBN: 978-3-319-18720-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics