Skip to main content

Predicting Protein Functions Based on Dynamic Protein Interaction Networks

  • Conference paper
Bioinformatics Research and Applications (ISBRA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 9096))

Included in the following conference series:

Abstract

Accurate annotation of protein functions plays a significant role in understanding life at the molecular level. With accumulation of sequenced genomes, the gap between available sequence data and their functional annotations has been widening. Many computational methods have been proposed to predict protein function from protein-protein interaction (PPI) networks. However, the precision of function prediction still needs to be improved. Taking into account the dynamic nature of PPIs, we construct a dynamic protein interactome network by integrating PPI network and gene expression data. To reduce the negative effect of false positive and false negative on the protein function prediction, we predict and generate some new protein interactions combing with proteins’ domain information and protein complex information and weight all interactions. Based on the weighted dynamic network, we propose a method for predicting protein functions, named PDN. After traversing all the different dynamic networks, a set of candidate neighbors is formed. Then functions derived from the set of candidates are scored and sorted, according to the weighted degree of candidate proteins. Experimental results on four different yeast PPI networks indicate that the accuracy of PDN is 18% higher than other competing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Jones, D.T., Swindells, M.B.: Getting the most from PSI–BLAST. Trends in Biochemical Sciences 27(3), 161–164 (2002)

    Article  Google Scholar 

  • Schwikowski, B., Uetz, P., Fields, S.: A network of protein–protein interactions in yeast. Nature Biotechnology 18, 1257–1261 (2000)

    Article  Google Scholar 

  • Hishigaki, H., Nakai, K., Ono, T., et al.: Assessment of prediction accuracy of protein function from protein–protein interaction data. Yeast 18(6), 523–531 (2001)

    Article  Google Scholar 

  • Chua, H.N., Sung, W.K., Wong, L.: Exploiting indirect neighbours and topological weight to predict protein function from protein-protein interactions. Bioinformatics 22(13), 1623–1630 (2006)

    Article  Google Scholar 

  • Vazquez, A., Flammini, A., Maritan, A., et al.: Global protein function prediction from protein-protein interaction networks. Nature Biotechnology 21(6), 697–700 (2003)

    Article  Google Scholar 

  • Nabieva, E., Jim, K., Agarwal, A., et al.: Whole-proteome prediction of protein function via graph-theoretic analysis of interaction maps. Bioinformatics 21(suppl. 1), i302–i310 (2005)

    Google Scholar 

  • Deng, M., Zhang, K., Mehta, S., et al.: Prediction of protein function using protein-protein interaction data. Journal of Computational Biology 10(6), 947–960 (2003)

    Article  Google Scholar 

  • Letovsky, S., Kasif, S.: Predicting protein function from protein/protein interaction data: a probabilistic approach. Bioinformatics 19(suppl. 1), i197–i204 (2003)

    Google Scholar 

  • Yeang, C.H., Mak, H.C., McCuine, S., et al.: Validation and refinement of gene-regulatory pathways on a network of physical interactions. Genome Biol. 6, R62 (2005)

    Google Scholar 

  • Scott, J., Ideker, T., Karp, R.M., et al.: Efficient algorithms for detecting signaling pathways in protein interaction networks. J. Comput. Biol. 13, 133–144 (2006)

    Article  MathSciNet  Google Scholar 

  • Zhang, S., Chen, H., Liu, K., Sun, Z.: Inferring protein function by domain context similarities in protein-protein interaction networks. BMC Bioinformatics 10, 395 (2009)

    Article  Google Scholar 

  • Peng, W., Wang, J., Cai, J., et al.: Improving protein function prediction using domain and protein complexes in PPI networks. BMC Systems Biology 8(1), 35 (2014)

    Article  Google Scholar 

  • Liang, S., Zheng, D., Standley, D.M., et al.: A novel function prediction approach using protein overlap networks. BMC Systems Biology 7(1), 61 (2013)

    Article  Google Scholar 

  • Peters, J.M.: The anaphase-promoting complex: proteolysis in mitosis and beyond. Molecular Cell 9(5), 931–943 (2002)

    Article  Google Scholar 

  • Black, D.L.: Mechanisms of alternative pre-messenger RNA splicing. Annual Review of Biochemistry 72(1), 291–336 (2003)

    Article  MathSciNet  Google Scholar 

  • LaCava, J., Houseley, J., Saveanu, C., et al.: RNA degradation by the exosome is promoted by a nuclear polyadenylation complex. Cell 121(5), 713–724 (2005)

    Article  Google Scholar 

  • Spirin, V., Mirny, L.A.: Protein complexes and functional modules in molecular networks. Proceedings of the National Academy of Sciences 100(21), 12123–12128 (2003)

    Article  Google Scholar 

  • Yook, S.H., Oltvai, Z.N., Barabási, A.L.: Functional and topological characterization of protein interaction networks. Proteomics 4(4), 928–942 (2004)

    Article  Google Scholar 

  • Mantzaris, A.V., Bassett, D.S., Wymbs, N.F., et al.: Dynamic network centrality summarizes learning in the human brain. Journal of Complex Networks 1(1), 83–92 (2013)

    Article  Google Scholar 

  • Tu, B.P., Kudlicki, A., Rowicka, M., et al.: Logic of the yeast metabolic cycle: temporal compartmentalization of cellular processes. Science 310(5751), 1152–1158 (2005)

    Article  Google Scholar 

  • Tang, X., Wang, J., Liu, B., et al.: A comparison of the functional modules identified from time course and static PPI network data. BMC Bioinformatics 12(1), 339 (2011)

    Article  Google Scholar 

  • Wang, J., Peng, X., Peng, W., et al.: Dynamic protein interaction network construction and applications. Proteomics 14(4-5), 338–352 (2014)

    Article  Google Scholar 

  • Zhao, B.H., Wang, J.X., Li, M., et al.: Detecting Protein Complexes Based on Uncertain Graph Model. IEEE/ACM Transactions on Computational Biology and Bioinformatics 11(3), 486–497 (2014)

    Article  MathSciNet  Google Scholar 

  • Zhao, B.H., Wang, J.X., Li, M., et al.: Prediction of essential proteins based on overlapping essential modules. IEEE Transactions on NanoBioscience 13(4), 415–424 (2014)

    Article  Google Scholar 

  • Xenarios, X., et al.: DIP: the database of interacting proteins. Nucleic Acids Research 28, 289–291 (2000)

    Article  Google Scholar 

  • Ashburner, M., Ball, C.A., Blake, J.A., et al.: Gene Ontology: tool for the unification of biology. Nature Genetics 25(1), 25–29 (2000)

    Article  Google Scholar 

  • Finn, R.D., Mistry, J., Tate, J., et al.: The Pfam protein families database. Nucleic Acids Research, gkp985 (2009)

    Google Scholar 

  • Pu, S., Wong, J., Turner, B., et al.: Up-to-date catalogues of yeast protein complexes. Nucleic Acids Research 37(3), 825–831 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhao, B., Wang, J., Wu, FX., Pan, Y. (2015). Predicting Protein Functions Based on Dynamic Protein Interaction Networks. In: Harrison, R., Li, Y., Măndoiu, I. (eds) Bioinformatics Research and Applications. ISBRA 2015. Lecture Notes in Computer Science(), vol 9096. Springer, Cham. https://doi.org/10.1007/978-3-319-19048-8_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19048-8_33

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19047-1

  • Online ISBN: 978-3-319-19048-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics