Skip to main content

Structural and Mechanical Properties Changes in Carbon and Boron Nitride Nanotubes Under the Impact of Atomic Oxygen

  • Conference paper
  • First Online:
Protection of Materials and Structures from the Space Environment

Part of the book series: Astrophysics and Space Science Proceedings ((ASSSP,volume 47))

Abstract

This paper presents results of simulation of processes of the oxygen atom impact on carbon and boron nanotubes with ab initio (DFT) and semi-empirical (SCC DFTB) methods. Our calculations demonstrated that the impact of oxygen atoms may cause the nanotube elongation and unzipping. We performed DFTB simulations of the impact of hyperthermal oxygen atoms on graphene and carbon nanotubes of small diameter in the case of a low-coverage regime to obtain a detailed picture of the formation of different oxygen-containing groups on their surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Minton TK, Garton DJ (2001) Dynamics of atomic-oxygen-induced polymer degradation in low-Earth orbit. In: Dressler RA (ed) Chemical dynamics in extreme environments, vol 11, Advanced series in physical chemistry. World Scientific, Singapore, pp 420–489

    Chapter  Google Scholar 

  2. Ajayan PM, Yakobson BI (2006) Oxygen breaks into carbon world. Nature 441:15

    Article  Google Scholar 

  3. Felten A, Bittencourt C, Pireaux JJ et al (2005) Radio-frequency plasma functionalization of carbon nanotubes surface by O2, NH3 and CF4 treatments. J Appl Phys 98:074308

    Article  Google Scholar 

  4. Golberg D et al (2007) Boron nitride nanotubes. Adv Mater 19:2413–2432

    Article  Google Scholar 

  5. Sadovnichy V, Tikhonravov A, Voevodin V et al (2013) “Lomonosov”: supercomputing at Moscow State University. In: Contemporary high performance computing: from petascale toward exascale. CRC Press, Boca Raton, pp 283–307

    Google Scholar 

  6. Delley B (2000) From molecules to solids with the DMol3 approach. J Chem Phys 113:7756

    Article  Google Scholar 

  7. Elstner M et al (1998) Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys Rev B 58:7260–7268

    Article  Google Scholar 

  8. Dag S, Gulseren O, Yildirim T, Ciraci S (2003) Oxygenation of carbon nanotubes: atomic structure, energetics, and electronic structure. Phys Rev B 67:165424

    Article  Google Scholar 

  9. Krueger A (2010) Carbon materials and nanotechnology. Wiley-VCH, Weinheim

    Book  Google Scholar 

  10. Chen Y et al (2007) Theoretical study of O2 adsorption and reactivity on single-walled boron nitride nanotubes. Chem Phys Lett 449:149

    Article  Google Scholar 

  11. Voronina EN, Novikov LS, Chernik VN et al (2012) Mathematical and experimental simulation of impact of atomic oxygen of the Earth’s upper atmosphere on nanostructures and polymer composites. Inorg Mater: Appl Res 3(2):95–101

    Article  Google Scholar 

  12. Ashraf MK, Bruque NA, Pandey RR et al (2009) Effect of localized oxygen functionalization on the conductance of metallic carbon nanotubes. Phys Rev B 79:115428

    Article  Google Scholar 

  13. Guo Y, Jiang L, Guo W (2010) Opening carbon nanotubes into zigzag graphene nanoribbons by energy-optimum oxidation. Phys Rev B 82:115440

    Article  Google Scholar 

  14. Sanchez-Portal D, Artacho E, Soler JM (1999) Ab initio structural, elastic, and vibrational properties of carbon nanotubes. Phys Rev B 59(19):12678–12688

    Article  Google Scholar 

  15. Kosynkin DV, Higginbotham AL, Sinitskii A et al (2009) Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458:872–877

    Article  Google Scholar 

  16. Rangel NL, Sotelo JC, Seminario JM (2009) Mechanism of carbon nanotubes unzipping into graphene ribbons. J Chem Phys 131:031105

    Article  Google Scholar 

  17. Voronina EN, Novikov LS (2013) Ab initio study of unzipping processes in carbon and boron nitride nanotubes under atomic oxygen impact. RSC Adv 3(35):15362

    Article  Google Scholar 

  18. Sun T, Fabris S (2012) Mechanisms for oxidative unzipping and cutting of graphene. Nano Lett 12:17

    Article  Google Scholar 

  19. Paci JT, Upadhyaya HP, Zhang J, Schatz GC, Minton TK (2009) Theoretical and experimental studies of the reactions between hyperthermal O(3P) and graphite: graphene-based direct dynamics and beam-surface scattering approaches. J Phys Chem A 113:4677–4685

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lev S. Novikov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Voronina, E.N., Novikov, L.S. (2017). Structural and Mechanical Properties Changes in Carbon and Boron Nitride Nanotubes Under the Impact of Atomic Oxygen. In: Kleiman, J. (eds) Protection of Materials and Structures from the Space Environment. Astrophysics and Space Science Proceedings, vol 47. Springer, Cham. https://doi.org/10.1007/978-3-319-19309-0_29

Download citation

Publish with us

Policies and ethics