Skip to main content

Estimation in High Dimensions: A Geometric Perspective

  • Chapter
Sampling Theory, a Renaissance

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

This tutorial provides an exposition of a flexible geometric framework for high-dimensional estimation problems with constraints. The tutorial develops geometric intuition about high-dimensional sets, justifies it with some results of asymptotic convex geometry, and demonstrates connections between geometric results and estimation problems. The theory is illustrated with applications to sparse recovery, matrix completion, quantization, linear and logistic regression, and generalized linear models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Partially supported by NSF grant DMS 1265782 and USAF Grant FA9550-14-1-0009.

  2. 2.

    Here \(a_{n} \asymp b_{n}\) means that there exists positive absolute constants c and C such that ca n  ≤ b n  ≤ Ca n for all n.

  3. 3.

    This intuition is a good approximation to truth, but it should be corrected. While concentration of volume tells us that the bulk is contained in a certain Euclidean ball (and even in a thin spherical shell), it is not always true that the bulk is a Euclidean ball (or shell); a counterexample is the unit cube [−1, 1]n. In fact, the cube is the worst convex set in the Dvoretzky theorem, which we are about to state.

  4. 4.

    Conclusion (1.10) is stated with the convention that \(\sup _{\boldsymbol{u}\in T_{\varepsilon }}\|u\|_{2} = 0\) whenever \(T_{\varepsilon } =\emptyset\).

  5. 5.

    We can assume T to be finite to avoid measurability complications and then proceed by approximation; see, e.g., [43, Section 2.2].

  6. 6.

    The increment comparison may look better if we replace the L 2 norm on the right-hand side by ψ 2 norm. Indeed, it is easy to see that \(\|G(\boldsymbol{s}) - G(\boldsymbol{t})\|_{\psi _{2}} \asymp (\mathbb{E}\|G(\boldsymbol{s}) - G(\boldsymbol{t})\|_{2}^{2})^{1/2}\).

  7. 7.

    We should mention that a reverse inequality also holds: by isotropy, one has \(\mathbb{E}_{\boldsymbol{a}}\vert \left \langle \boldsymbol{a},\boldsymbol{u}\right \rangle \vert \leq (\mathbb{E}_{\boldsymbol{a}}\left \langle \boldsymbol{a},\boldsymbol{u}\right \rangle ^{2})^{1/2} =\|\boldsymbol{ u}\|_{2}\). However, this inequality will not be used in the proof.

  8. 8.

    In definition (1.28), we adopt the convention that 0∕0 = 0.

  9. 9.

    The only (minor) difference with our former definition (1.3) of the mean width is that we take supremum over S instead of SS, so \(\bar{w}(S)\) is a smaller quantity. The reason we do not need to consider SS because we already subtracted \(\boldsymbol{x}\) in the definition of the descent cone.

  10. 10.

    Formally, consider the singular value decomposition \(p^{-1}Y =\sum _{i}s_{i}\boldsymbol{u}_{i}\boldsymbol{v}_{i}^{\mathsf{T}}\) with nonincreasing singular values s i . We define \(\hat{X}\) by retaining the r leading terms of this decomposition, i.e., \(\hat{X} =\sum _{ i=1}^{r}s_{i}\boldsymbol{u}_{i}\boldsymbol{v}_{i}^{\mathsf{T}}\).

  11. 11.

    A high-probability version of Theorem  11.2 was proved in [59]. Namely, denoting by δ the right-hand side of (1.44) , we have \(\max _{\mathcal{C}}\mathop{\mathrm{diam}}\nolimits (K \cap \mathcal{C}) \leq \delta\) with probability at least \(1 - 2\exp (-c\delta ^{2}m)\) , as long as m ≥ Cδ −6 w(K) 2 . The reader will easily deduce the statement of Theorem  11.2 from this.

References

  1. R. Adamczak, R. Latala, A. Litvak, K. Oleszkiewicz, A. Pajor, N. Tomczak-Jaegermann, A short proof of Paouris’ inequality. Can. Math. Bull. 57, 3–8 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Ai, A. Lapanowski, Y. Plan, R. Vershynin, One-bit compressed sensing with non-Gaussian measurements. Linear Algebra Appl. 441, 222–239 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. D. Amelunxen, M. Lotz, M. McCoy, J.A. Tropp, Living on the edge: a geometric theory of phase transitions in convex optimization. Inf. Inference 3, 224–294 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. S. Artstein-Avidan, A. Giannopoulos, V. Milman, Asymptotic Geometric Analysis, Part I. AMS Mathematical Surveys and Monographs (2015)

    Google Scholar 

  5. F. Bach, R. Jenatton, J. Mairal, G. Obozinski, Structured sparsity through convex optimization. Stat. Sci. 27, 450–468 (2012)

    Article  MathSciNet  Google Scholar 

  6. K. Ball, An elementary introduction to modern convex geometry, in Flavors of Geometry. Mathematical Sciences Research Institute Publications, vol. 31 (Cambridge University Press, Cambridge, 1997), pp. 1–58

    Google Scholar 

  7. H. Bauschke, P. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC (Springer, New York, 2011)

    Google Scholar 

  8. A. Ben-Tal, A. Nemirovski, Lectures on Modern Convex Optimization. Analysis, Algorithms, and Engineering Applications. MPS/SIAM Series on Optimization (Society for Industrial and Applied Mathematics (SIAM)/Mathematical Programming Society (MPS), Philadelphia, 2001)

    Google Scholar 

  9. S. Boucheron, O. Bousquet, G. Lugosi, Concentration inequalities, in Advanced Lectures in Machine Learning, ed. by O. Bousquet, U. Luxburg, G. Rätsch (Springer, Berlin, 2004), pp. 208–240

    Chapter  Google Scholar 

  10. P. Boufounos, R. Baraniuk, 1-bit compressive sensing, in Conference on Information Sciences and Systems (CISS), March 2008 (Princeton, New Jersey, 2008)

    Google Scholar 

  11. P. Bühlmann, S. van de Geer, Statistics for High-Dimensional Data. Methods, Theory and Applications. Springer Series in Statistics (Springer, Heidelberg, 2011)

    Google Scholar 

  12. E. Candès, B. Recht, Exact matrix completion via convex optimization. Found. Comput. Math. 9, 717–772 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. E. Candès, T. Tao, The power of convex relaxation: near-optimal matrix completion. IEEE Trans. Inf. Theory 56, 2053–2080 (2010)

    Article  Google Scholar 

  14. E. Candès, X. Li, Y. Ma, J. Wright, Robust principal component analysis? J. ACM 58(3), Art. 11, 37 pp. (2011)

    Google Scholar 

  15. D. Chafaï, O. Guédon, G. Lecué, A. Pajor, Interactions Between Compressed Sensing Random Matrices and High Dimensional Geometry. Panoramas et Synthéses, vol. 37 (Société Mathématique de France, Paris, 2012)

    Google Scholar 

  16. V. Chandrasekaran, B. Recht, P. Parrilo, A. Willsky, The convex geometry of linear inverse problems. Found. Comput. Math. 12, 805–849 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. S. Chatterjee, A new perspective on least squares under convex constraint. Ann. Stat. 42, 2340–2381 (2014)

    Article  MATH  Google Scholar 

  18. S. Chen, D. Donoho, M. Saunders, Atomic decomposition by Basis Pursuit. SIAM J. Sci. Comput. 20, 33–61 (1998)

    Article  MathSciNet  Google Scholar 

  19. M. Davenport, M. Duarte, Y. Eldar, G. Kutyniok, Introduction to compressed sensing, in Compressed Sensing (Cambridge University Press, Cambridge, 2012), pp. 1–64

    Google Scholar 

  20. M. Davenport, D. Needell, M. Wakin, Signal space CoSaMP for sparse recovery with redundant dictionaries. IEEE Trans. Inf. Theory 59, 6820–6829 (2013)

    Article  MathSciNet  Google Scholar 

  21. D. Donoho, M. Elad, Optimally sparse representation in general (nonorthogonal) dictionaries via l 1 minimization. Proc. Natl. Acad. Sci. USA 100, 2197–2202 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. D. Donoho, J. Tanner, Counting faces of randomly projected polytopes when the projection radically lowers dimension. J. Am. Math. Soc. 22, 1–53 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. A. Dvoretzky, A theorem on convex bodies and applications to Banach spaces. Proc. Natl. Acad. Sci. USA 45, 223–226 (1959)

    Article  MathSciNet  Google Scholar 

  24. A. Dvoretzky, Some results on convex bodies and Banach spaces, in Proceedings of the International Symposium on Linear Spaces (Jerusalem, 1961), pp. 123–161

    Google Scholar 

  25. X. Fernique, Regularité des trajectoires des fonctions aléatoires gaussiennes, in École d’Été de Probabilités de Saint-Flour, IV-1974. Lecture Notes in Mathematics, vol. 480 (Springer, Berlin, 1975), pp. 1–96

    Google Scholar 

  26. S. Foucart, H. Rauhut, A Mathematical Introduction to Compressive Sensing. Applied and Numerical Harmonic Analysis (Birkhäuser/Springer, New York, 2013)

    Book  MATH  Google Scholar 

  27. A. Giannopoulos, V. Milman, How small can the intersection of a few rotations of a symmetric convex body be? C. R. Acad. Sci. Paris Ser. I Math. 325, 389–394 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  28. A. Giannopoulos, V. Milman, On the diameter of proportional sections of a symmetric convex body. Int. Math. Res. Not. 1, 5–19 (1997)

    Article  MathSciNet  Google Scholar 

  29. A. Giannopoulos, V.D. Milman, Mean width and diameter of proportional sections of a symmetric convex body. J. Reine Angew. Math. 497, 113–139 (1998)

    MathSciNet  MATH  Google Scholar 

  30. A. Giannopoulos, V. Milman, Asymptotic convex geometry: short overview, in Different Faces of Geometry. International Mathematical Series (NY), vol. 3 (Kluwer/Plenum, New York, 2004), pp. 87–162

    Google Scholar 

  31. A. Giannopoulos, V.D. Milman, Asymptotic formulas for the diameter of sections of symmetric convex bodies. J. Funct. Anal. 223, 86–108 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. A. Giannopoulos, S. Brazitikos, P. Valettas, B.-H. Vritsiou, Geometry of Isotropic Convex Bodies. Mathematical Surveys and Monographs, vol. 196 (American Mathematical Society, Providence, 2014)

    Google Scholar 

  33. Y. Gordon, On Milman’s inequality and random subspaces which escape through a mesh in \(\mathbb{R}^{n}\), in Geometric Aspects of Functional Analysis. Israel Seminar 1986–1987. Lecture Notes in Mathematics, vol. 1317 (Springer, Berlin, 1988), pp. 84–106

    Google Scholar 

  34. D. Gross, Recovering low-rank matrices from few coefficients in any basis. IEEE Trans. Inf. Theory 57, 1548–1566 (2011)

    Article  Google Scholar 

  35. O. Guédon, E. Milman, Interpolating thin-shell and sharp large-deviation estimates for isotropic log-concave measures. Geom. Funct. Anal. 21, 1043–1068 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. L. Jacques, J. Laska, P. Boufounos, R. Baraniuk, Robust 1-bit compressive sensing via binary stable embeddings of sparse vectors. IEEE Trans. Inf. Theory 59(4), 2082–2102 (2013)

    Article  MathSciNet  Google Scholar 

  37. R. Keshavan, A. Montanari, S. Oh, Matrix completion from a few entries. IEEE Trans. Inf. Theory 56, 2980–2998 (2010)

    Article  MathSciNet  Google Scholar 

  38. B. Klartag, Power-law estimates for the central limit theorem for convex sets. J. Funct. Anal. 245, 284–310 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  39. G. Kutyniok, Theory and applications of compressed sensing. GAMM-Mitt. 36, 79–101 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. G. Lecué, S. Mendelson, Sparse recovery under weak moment assumptions. J. Eur. Math. Soc. (2015, to appear)

    Google Scholar 

  41. G. Lecué, S. Mendelson, Necessary moment conditions for exact reconstruction via Basis Pursuit (submitted)

    Google Scholar 

  42. M. Ledoux, The Concentration of Measure Phenomenon. Mathematical Surveys and Monographs, vol. 89 (American Mathematical Society, Providence, 2001)

    Google Scholar 

  43. M. Ledoux, M. Talagrand, Probability in Banach Spaces. Isoperimetry and Processes [Reprint of the 1991 Edition]. Classics in Mathematics (Springer, Berlin, 2011)

    Google Scholar 

  44. S. Mendelson, A few notes on statistical learning theory, in Advanced Lectures in Machine Learning, ed. by S. Mendelson, A.J. Smola. Lecture Notes in Computer Science, vol. 2600 (Springer, Berlin, 2003), pp. 1–40

    Google Scholar 

  45. S. Mendelson, Geometric parameters in learning theory, in Geometric Aspects of Functional Analysis. Lecture Notes in Mathematics, vol. 1850 (Springer, Berlin, 2004), pp. 193–235

    Google Scholar 

  46. S. Mendelson, A remark on the diameter of random sections of convex bodies, in Geometric Aspects of Functional Analysis (GAFA Seminar Notes). Lecture Notes in Mathematics, vol. 2116 (2014), pp. 395–404

    Google Scholar 

  47. S. Mendelson, A. Pajor, N. Tomczak-Jaegermann, Reconstruction and subgaussian operators in asymptotic geometric analysis. Geom. Funct. Anal. 17, 1248–1282 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  48. V. Milman, New proof of the theorem of Dvoretzky on sections of convex bodies. Funct. Anal. Appl. 5, 28–37 (1971)

    MathSciNet  Google Scholar 

  49. V. Milman, Geometrical inequalities and mixed volumes in the local theory of Banach spaces. Astérisque 131, 373–400 (1985)

    MathSciNet  Google Scholar 

  50. V. Milman, Random Subspaces of Proportional Dimension of Finite Dimensional Normed Spaces: Approach Through the Isoperimetric Inequality. Lecture Notes in Mathematics, vol. 1166 (1985, Springer), pp. 106–115

    Google Scholar 

  51. V. Milman, Surprising geometric phenomena in high-dimensional convexity theory, in European Congress of Mathematics, vol. II (Budapest, 1996). Progress in Mathematics, vol. 169 (Birkhäuser, Basel, 1998), pp. 73–91

    Google Scholar 

  52. V. Milman, G. Schechtman, Asymptotic Theory of Finite-Dimensional Normed Spaces. With an Appendix by M. Gromov. Lecture Notes in Mathematics, vol. 1200 (Springer, Berlin, 1986)

    Google Scholar 

  53. S. Oymak, B. Hassibi, New null space results and recovery thresholds for matrix rank minimization. Available at arxiv.org/abs/1011.6326 (2010)

    Google Scholar 

  54. G. Paouris, Concentration of mass on convex bodies. Geom. Funct. Anal. 16, 1021–1049 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  55. A. Pajor, N. Tomczak-Jaegermann, Subspaces of small codimension of finite dimen- sional Banach spaces. Proc. Am. Math. Soc. 97, 637–642 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  56. G. Pisier, The Volume of Convex Bodies and Banach Space Geometry. Cambridge Tracts in Mathematics, vol. 94 (Cambridge University Press, Cambridge, 1989)

    Google Scholar 

  57. Y. Plan, R. Vershynin, One-bit compressed sensing by linear programming. Commun. Pure Appl. Math. 66, 1275–1297 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  58. Y. Plan, R. Vershynin, Robust 1-bit compressed sensing and sparse logistic regression: a convex programming approach. IEEE Trans. Inf. Theory 59, 482–494 (2013)

    Article  MathSciNet  Google Scholar 

  59. Y. Plan, R. Vershynin, Dimension reduction by random hyperplane tessellations. Discret. Comput. Geom. 51, 438–461 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  60. Y. Plan, R. Vershynin, E. Yudovina, High-dimensional estimation with geometric constraints [Arxiv: 1404.3749] (submitted)

  61. N. Rao, B. Recht, R. Nowak, Tight measurement bounds for exact recovery of structured sparse signals, in Proceedings of AISTATS (2012)

    Google Scholar 

  62. H. Rauhut, K. Schnass, P. Vandergheynst, Compressed sensing and redundant dictionaries. IEEE Trans. Inf. Theory 54, 2210–2219 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  63. B. Recht, A simpler approach to matrix completion. J. Mach. Learn. Res. 12, 3413–3430 (2011)

    MathSciNet  MATH  Google Scholar 

  64. R. Rockafellar, Convex Analysis. Princeton Mathematical Series, vol. 28 (Princeton University Press, Princeton, 1970)

    Google Scholar 

  65. M. Rudelson, R. Vershynin, Combinatorics of random processes and sections of convex bodies. Ann. Math. 164, 603–648 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  66. M. Rudelson, R. Vershynin, On sparse reconstruction from Fourier and Gaussian measurements. Commun. Pure Appl. Math. 61, 1025–1045 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  67. Y. Seginer, The expected norm of random matrices. Comb. Probab. Comput. 9, 149–166 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  68. N. Srebro, N. Alon, T. Jaakkola, Generalization error bounds for collaborative prediction with low-rank matrices, in Proceedings of Advances in Neural Information Processing Systems (NIPS), vol. 17 (2005)

    Google Scholar 

  69. M. Stojnic, Various thresholds for 1-optimization in compressed sensing (2009) [Arxiv: 0907.3666]

  70. M. Talagrand, Regularity of Gaussian processes. Acta Math. 159, 99–149 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  71. M. Talagrand, The Generic Chaining. Upper and Lower Bounds of Stochastic Processes. Springer Monographs in Mathematics (Springer, Berlin, 2005)

    Google Scholar 

  72. J. Tropp, Convex recovery of a structured signal from independent random linear measurements, in Sampling Theory, a Renaissance (to appear)

    Google Scholar 

  73. R. Vershynin, Introduction to the non-asymptotic analysis of random matrices, in Compressed Sensing (Cambridge University Press, Cambridge, 2012), pp. 210–268

    Google Scholar 

  74. M. Wainwright, Structured regularizers for high-dimensional problems: statistical and computational issues. Ann. Rev. Stat. Appl. 1, 233–253 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Vershynin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vershynin, R. (2015). Estimation in High Dimensions: A Geometric Perspective. In: Pfander, G. (eds) Sampling Theory, a Renaissance. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-19749-4_1

Download citation

Publish with us

Policies and ethics