Skip to main content

Drying Process in Electromagnetic Fields

  • Chapter
  • First Online:
Drying and Energy Technologies

Abstract

In this chapter a comprehensive study of the phenomena involved in the dehydration process of wet porous solids through the use of electromagnetic waves with the aim to improve process strategies has been presented. Electromagnetic waves penetrate into the material and heat it volumetrically, due to the interaction of the electric field with water molecules. Fundamental aspect of electromagnetic fields, and microwave, sun and infrared drying is reviewed and the effect of drying method on the drying rate, heating rate and product quality have been discussed along with different applications. A general mathematical modeling based on the diffusion theory (mass and heat conservation equations), Maxwell’s equations, Lambert’s law and Poynting vector theorem that predicts the volumetric heating and drying behavior of bioproduct was derived and the importance of this procedure of analysis on the drying process optimization were also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Datta, A.K., Anantheswaran, R.C.: Handbook of Microwave Technology for Food Applications. Marcel Dekker Inc., New York (2000)

    Google Scholar 

  2. Chandrasekaran, S., Ramanathan, S., Basak, T.: Microwave food processing—a review. Food. Res. Int. 52, 243–261 (2013)

    Article  Google Scholar 

  3. Schiffmann, R.F.: Microwave and Dielectric Drying. In: Mujumdar, A.S. (ed.) Handbook of Industrial Drying, pp. 285–305. CRC Press, Boca Raton (2007)

    Google Scholar 

  4. Schimidt, P.S., Bergman, T.L., Pearce, J.A.: Heat and mass transfer considerations in dielectrically—enhanced drying. In: 8th International Drying Symposium (IDS 92), Montreal, Canada, Part A, pp. 137–160 (1992)

    Google Scholar 

  5. Garcia, A., Iglesias, O., Roques, M., Bueno, J.L.: Microwave drying of agar gels: kinetic parameters. In: 8th International Drying Symposium (IDS’92), Montreal, Canada, Part A, pp. 595–606 (1992)

    Google Scholar 

  6. Sutar, P.P., Prasad, S., Sutar, N., Thorat, B.N.: Effect of microwave power density and pressure on selected quality parameters of dehydrated carrots. In: 16th International Drying Symposium (IDS’2008), Hyderabad, India, CD-Rom (2008)

    Google Scholar 

  7. Datta, A.K., Davidson, P.M.: Microwave and radio frequency processing. J. Food Sci. 65, 32–41 (2000)

    Article  Google Scholar 

  8. Ryynanen, S.: The electromagnetic properties of food materials: a review of the basic principles. J. Food Eng. 26, 409–429 (1995)

    Article  Google Scholar 

  9. Zhao, H., Turner, I.W.: The use of a coupled computational model for studying the microwave heating of wood. Appl. Math. Model. 24, 183–197 (2000)

    Article  MATH  Google Scholar 

  10. Yoshikawa, N.: Recent studies on fundamentals and application of microwave processing of material. In: Grundas, S. (ed.) Advances in Induction and Microwave Heating of Mineral and Organic Materials, pp. 3–26. Intech, Rijeka (2011)

    Google Scholar 

  11. Kowalski, S.J.: Continuous thermohydromechanical model using the theory of mixtures. In: Tsotsas, E., Mujumdar, A.S. (eds.) Modern Drying Technology: Computational Tools at Different Scales, vol. 1, pp. 125–154. Wiley-VCH, Weinheim (2007)

    Google Scholar 

  12. Malafronte, L., Lamberti, G., Barba, A.A., Raaholt, B., Holtz, E., Ahrné, L.: Combined convective and microwave assisted drying: experiments and modeling. J. Food Eng. 112, 304–312 (2012)

    Article  Google Scholar 

  13. Nastaj, J., Witkiewicz, K.: Experimental and simulation studies of the primary and secondary vacuum freeze drying at microwave heating. In: Grundas, S. (ed.) Advances in Induction and Microwave Heating of Mineral and Organic Materials, pp. 640–655. Intech, Rijeka (2011)

    Google Scholar 

  14. Lee, J., Kim, T.: Application of microwave heating to recover metallic elements from industrial waste. In: Grundas, S. (ed.) Advances in Induction and Microwave Heating of Mineral and Organic Materials, pp. 303–312. Intech, Rijeka (2011)

    Google Scholar 

  15. Ressing, H., Ressing, M., Durance, T.: Modeling the mechanisms of dough puffing during vacuum microwave drying using the finite element method. J. Food Eng. 82, 498–508 (2007)

    Article  Google Scholar 

  16. Wang, S., Tang, J., Johnson, J.A., Mitcham, E., Hansen, J.D., Hallman, G., Drake, S.R., Wang, Y.: Dielectric properties of fruits and insect pests as related to radio frequency and microwave treatments. Biosyst. Eng. 85(2), 201–212 (2003)

    Article  Google Scholar 

  17. Souraki, B.A., André, A., Mowlac, D.: Mathematical modeling of microwave-assisted inert medium fluidized bed drying of cylindrical carrot samples. Chem. Eng. Process. 48, 296–305 (2009)

    Article  Google Scholar 

  18. Das, S., Mukhopadhyay, A.K., Datta, S., Basu, D.: Prospects of microwave processing: an overview. Bull. Mater. Sci. 32(1), 1–13 (2009)

    Article  Google Scholar 

  19. Thostenson, E.T., Chou, T.W.: Microwave processing: fundamentals and applications. Part A Compos. 30, 1055–1071 (1999)

    Article  Google Scholar 

  20. Das, I., Kumar, G., Shah, N.G.: Microwave heating as an alternative quarantine method for disinfestation of stored food grains. Int. J. Food Sci. Article ID 926468, 13 pages (2013)

    Google Scholar 

  21. Feng, H., Yin, Y., Tang, J.: Microwave drying of food and agricultural materials: basics and heat and mass transfer modeling. J. Food Eng. Reviews. 4(2), 89–106 (2012)

    Article  Google Scholar 

  22. Campañone, L.A., Zaritzky, N.E.: Mathematical analysis of microwave heating process. J. Food Eng. 69, 359–368 (2005)

    Article  Google Scholar 

  23. Di, P., Chang, D.P.Y., Dwyer, H.A.: Heat and mass transfer during microwave steam treatment of contaminated soils. J. Environ. Eng. 126(12), paper no. 22131 (2000)

    Google Scholar 

  24. Bingol, G., Pan, Z., Roberts, J.S., Devres, Y.O., Balaban, M.O.: Mathematical modeling of microwave-assisted convective heating and drying of grapes. Int. J. Agric. Biol. Eng. 1(2), 46–54 (2008)

    Google Scholar 

  25. Pandit, R.B., Prasad, S.: Finite element analysis of microwave heating of potato-transient temperature profiles. J. Food Eng. 60, 193–202 (2003)

    Article  Google Scholar 

  26. Lin, Y.E., Anantheswaran, R.C., Puri, V.M.: Finite element analysis of microwave heating of solid foods. J. Food Eng. 25, 85–112 (1995)

    Article  Google Scholar 

  27. Jia, L.W., Islam, MdR, Mujumdar, A.S.: A simulation study on convection and microwave drying of different food products. Dry. Technol. 21(8), 1549–1574 (2003)

    Article  Google Scholar 

  28. Sanga, E.C.M., Mujumdar, A.S., Raghavan, G.S.V.: Simulation of convection-microwave drying for a shrinking material. Chem. Eng. Process. 41, 487–499 (2002)

    Article  Google Scholar 

  29. Arballo, J.R., Campañone, L.A., Mascheroni, R.H.: Modeling of microwave drying of fruits. Dry. Technol. 28, 1178–1184 (2010)

    Article  Google Scholar 

  30. Kristiawan, M., Sobolik, V., Klima, L., Allaf, K.: Effect of expansion by instantaneous controlled pressure drop on dielectric properties of fruits and vegetables. J. Food Eng. 102, 361–368 (2011)

    Article  Google Scholar 

  31. Sipahioglu, O., Barringer, S.A.: Dielectric properties of vegetables and fruits as a function of temperature, ash, and moisture content. J. Food Sci. 68(1), 234–239 (2003)

    Article  Google Scholar 

  32. Hasna, A.M.: Composite dielectric heating and drying: The computation process. In: 16th International Drying Symposium (IDS 2008), Hyderabad, India, CD-Rom (2008)

    Google Scholar 

  33. Shalmashi, A.: Drying of wet salicylic acid by microwave heating. In: 16th International Drying Symposium (IDS 2008), Hyderabad, India, CD-Rom (2008)

    Google Scholar 

  34. Monzó-Cabrera, J., Díaz-Morcillo, A., Catalá-Civera, J.M., De los Reyes, E.: Heat and mass transfer characterisation of microwave drying of leather. In: 12th International Drying Symposium (IDS’2000), Noordwijkerhout, The Netherlands, Paper No. 27 (2000)

    Google Scholar 

  35. Martín, M.E., Albors, A., Martínez-Navarrete, N., Chiralt, A., Fito. P.: Micro-structural changes in apple tissue subjected to combined air-microwave drying. In: 12th International Drying Symposium (IDS’2000), Noordwijkerhout, The Netherlands, Paper No. 419 (2000)

    Google Scholar 

  36. Raghavan, G.S.V., Li, Z., Wang, N., Gariepy, Y.: Control of microwave drying process through aroma monitoring. In: 16th International Drying Symposium (IDS 2008), Hyderabad, India, CD-Rom (2008)

    Google Scholar 

  37. Péré, C., Rodier, E., Louisnard, O., Schwartzentruber, J.: Investigations on microwave and vacuum drying experiments: drying of a model porous medium at laboratory scale. In: 12th International Drying Symposium (IDS’2000), Noordwijkerhout, The Netherlands, Paper No. 116 (2000)

    Google Scholar 

  38. Abhayawick, L., Laguerre, J.C., Duquenoy, A.: Runaway heating of onions during microwave drying. In: 12th International Drying Symposium (IDS2000), Noordwijkerhout, The Netherlands, Paper No. 158 (2000)

    Google Scholar 

  39. Emam-Djomeh, Z., Nazemi, Sh., Niakowsari, M., Ascari, G.: Combined effects of coating and microwave assisted hot air drying on kinetics of color changes of strawberry. In: 16th International Drying Symposium (IDS 2008), Hyderabad, India, CD-Rom (2008)

    Google Scholar 

  40. Zhang, M., Jiang, H., Lim, R.-X.: Recent developments in microwave-assisted drying of vegetables, fruits, and aquatic products-drying kinetics and quality considerations. Dry. Technol. 28, 1307–1316 (2010)

    Article  Google Scholar 

  41. González, A.B.B., Huelga, O.I., Bueno de las Heras, J.: Determination and analysis of the kinetics of drying for the combined convective-microwave drying of agar gels. In: 12th International Drying Symposium (IDS’2000), Noordwijkerhout, The Netherlands, Paper No. 157 (2000)

    Google Scholar 

  42. Askari, G.R., Tahmasbi, M., Emam-Djomeh Z.: Effect of drying method on drying curves, texture and microstructure of apple and tomato slices. In: 16th International Drying Symposium (IDS 2008), Hyderabad, India, CD-Rom (2008)

    Google Scholar 

  43. Torringa, H.M., Neijnens, H.P.M., Bartels, P.V.: Novel Process for the drying of sugar cubes applying microwave technology. In: 12th International Drying Symposium (IDS’2000), Noordwijkerhout, The Netherlands, Paper No. 230 (2000)

    Google Scholar 

  44. Ruiz, G., Martínez-Monzó, J., Barat, J.M., Chiralt, A., Fito, P.: Applying microwave in drying of orange slices. In: 12th International Drying Symposium (IDS´2000), Noordwijkerhout, The Netherlands, Paper No. 239 (2000)

    Google Scholar 

  45. Ahrens, F.W., Habeger, C.C.: Use of new applicator design ideas to improve uniformity of paper drying via microwave energy. In: 12th International Drying Symposium (IDS´2000), Noordwijkerhout, The Netherlands Paper No. 298 (2000)

    Google Scholar 

  46. Berteli, M.N., Marsaioli, Jr. A.: Evaluation of a continuous rotary air dryer assisted by microwaves in comparison with the conventional air dryer in the short cut pasta production. In: 13th International Drying Symposium (IDS’2002), Beijing, China, vols. A, B and C, Paper No. 874 (2002)

    Google Scholar 

  47. Beke, J., Kurják, Z., Bihercz, G.: Microwave field test of inner moisture and temperature conditions of beetroot. In: 13th International Drying Symposium (IDS’2002), with the Conventional Air Dryer in the Short Cut Pasta Production, Beijing, China, vols. A, B and C, Paper No. 891 (2002)

    Google Scholar 

  48. RodrÍGuez, R., De Elvira, C., Lombraña, J.I., Kamel, M.: Effect of different vacuum microwave drying strategies on moisture sorption capacity of freeze-dried products. In: 13th International Drying Symposium (IDS’2002), Beijing, China, vols. A, B and C, Paper No. 909 (2002)

    Google Scholar 

  49. Dong, T., Kimura, T., Yoshizaki, S.: Microwave drying of thick layer brown rice with concurrent flow ventilation. In: 13th International Drying Symposium (IDS’2002), Beijing, China, 2002, vols. A, B and C, Paper No. 917 (2002)

    Google Scholar 

  50. Mcloughlin, C.M., Mcminn, W.A.M., Magee, T.R.A.: Combined microwave and convective drying of pharmaceuticals. In: 13th International Drying Symposium (IDS’2002), Beijing, China, vols. A, B and C, Paper No. 1472 (2002)

    Google Scholar 

  51. Lescano, C., César, L., Tonin, L., Pereira, N., Marsaioli, A.: Kinetics evaluation of the microwave drying of Okara. In: 16th International Drying Symposium (IDS’2008), Hyderabad, India, CD-Rom (2008)

    Google Scholar 

  52. Nordin, M.F.M., Gariépy, Y., Daud, W.R.W., Raghavan, G.S.V., Talib, M.Z.M.: Microwave and hot air drying for red pitaya (hylocereus undatus). In: 16th International Drying Symposium (IDS’2008), Hyderabad, India, CD-Rom (2008)

    Google Scholar 

  53. Shalmashi, A.: Microwave assisted drying of wet caffeine. In: 16th International Drying Symposium (IDS’2008), Hyderabad, India, CD-Rom (2008)

    Google Scholar 

  54. McMinn, W.A.M., McLoughlin, C.M., Farrell, G., Magee, T.R.A.: Temperature profiles in powder beds during microwave drying. In: 14th International Drying Symposium (IDS’2004), São Paulo, Brazil, vol. B, pp. 1081–1088 (2004)

    Google Scholar 

  55. Wang, W., Chen, G.: Theoretical study on microwave freeze-drying of an aqueous solution of lactose with the aid of dielectric material. In: 14th International Drying Symposium (IDS’2004), São Paulo, Brazil, vol. B, pp. 1142–1149 (2004)

    Google Scholar 

  56. Itaya, Y., Uchiyama, S., Hatano. S., Mori, S.: Drying enhancement of clay slab by microwave heating. In: 14th International Drying Symposium (IDS 2004), São Paulo, Brazil, vol. A, pp. 193–200 (2004)

    Google Scholar 

  57. Andrés, A.M., Betoret, N.N., Guillermo, B., Fito, P.: Microwave-assisted air drying of cassava slices. In: 14th International Drying Symposium (IDS’2004), São Paulo, Brazil, vol. C, pp. 1599–1603 (2004)

    Google Scholar 

  58. .Bihercz, G., Kurjak, Z.: Analysis of the microwave and convective vegetable dewatering process as a function of drying conditions. In: 14th International Drying Symposium (IDS’2004), São Paulo, Brazil, vol. C, pp. 1652–1659 (2004)

    Google Scholar 

  59. Kamel, M., De Elvira, C., Lombraña, J.I., RodrÍGuez, R.: Drying kinetics and energy consumption in vacuum drying process with microwave and radiant heating. In: 13th International Drying Symposium (IDS’2002), Beijing, China, vols. A, B and C, Paper No. 882 (2002)

    Google Scholar 

  60. Qianqian, D., Junhong, Y., Wei, W., Mingdi, S., Jun, Z.: Effect of microwave drying technology on micro-structure and dehydration characteristic of angelica sleces. In: 16th International Drying Symposium (IDS’2008), Hyderabad, India, CD-Rom (2008)

    Google Scholar 

  61. Yarmand, M.S., Homayouni, A.: Microware processing of meat. In: Chandra, U. (ed.) Microwave Heating, pp. 107–134. Intech, Rijeka (2011)

    Google Scholar 

  62. Shaheen, M.S., El-Massry, K.F., El-Ghorab, A.H., Anjum, F.M.: Microwave applications in thermal food processing. In: The Development and Application of Microwave Heating, pp. 3–16. Intech, Rijeka (2012)

    Google Scholar 

  63. Saxena, V.K., Chandra, U.: Microwave synthesis: a physical concept. In: Chandra, U. (ed.) Microwave Heating, pp. 3–22. Intech, Rijeka (2011)

    Google Scholar 

  64. Kreith, F., Bohn, M.S.: Principle of Heat Transfer. Brooks/Cole, Pacific Grove (2001)

    Google Scholar 

  65. Kaviany, M.: Principle of Heat Transfer. Wiley, New York (2002)

    Google Scholar 

  66. Strumillo, C., Kudra, T.: Drying: principles, science and design. Gordon and Breach Science Publishers, New York (1986)

    Google Scholar 

  67. Ratti, C., Mujumdar, A.S.: Infrared drying. In: Mujumdar, A.S. (ed.) Handbook of Industrial Drying, pp. 423–438. CRC Press, Boca Raton (2007)

    Google Scholar 

  68. van’t Land, C.M.: Industrial Drying Equipment: Selection and Application. Marcel Dekker Inc., New York (1991)

    Google Scholar 

  69. Incropera, F.P., DeWitt, D.P.: Fundamentals of Heat and Mass Transfer. Wiley, New York (2002)

    Google Scholar 

  70. Seyed-Yagoobi, J., Sikirica, S.J., Counts, K.M.: Heating/drying of paper sheet with gas-fired infrared emitters-pilot machine trials. In: 12th International Drying Symposium (IDS´2000), Noordwijkerhout, The Netherlands, Paper No. 319 (2000)

    Google Scholar 

  71. Noboa, H., Seyed-Yagoobi, J.: Drying of uncoated paper with gas-fired infrared emitters-optimum emitters’ location within the paper machine drying section. In: 13th International Drying Symposium (IDS’’2002), Beijing, China, vols. A, B and C, Paper No. 81 (2002)

    Google Scholar 

  72. Seyed-Yagoobi, J., Noboa, H.: Heating/drying of uncoated paper with gas-fired and electric infrared emitters—fundamental understanding. In: 14th International Drying Symposium (IDS’2004), São Paulo, Brazil, vol. B, pp. 1217–1224 (2004)

    Google Scholar 

  73. Alves-Filho, O., Eikevik, T.M.: Hybrid heat pump drying technologies for porous materials. In: 16th International Drying Symposium (IDS’2008), Hyderabad, India, CD-Rom (2008)

    Google Scholar 

  74. Allanic, N., Salagnac, P., Glouannec, P., Ploteau, J.P.: Experimental study of the drying and curing of water based varnishes by infrared radiation. In: 16th International Drying Symposium (IDS’2008), Hyderabad, India, CD-Rom (2008)

    Google Scholar 

  75. Dontigny, P., Angers, P., Supino, M.: Graphite slurry dehydration by infrared radiation under vacuum conditions. In: International Drying Symposium (IDS’92), Part A, pp. 669–678 (1992)

    Google Scholar 

  76. Brooks, F.A., Miller, W.: Availability of solar energy. In: Zarem, A.M., Erway, D. (eds.) Introduction to the Utilization of Solar Energy, pp. 30–58. McGraw-Hill, New York (1963)

    Google Scholar 

  77. McVeigh, J.C.: Sun power—an introduction to the application of solar energy. Pergamon Press, New York (1977)

    Google Scholar 

  78. Sabins, F.F.: Remote Sensing: Principles and Interpretation. W.H. Freeman, San Francisco (1978)

    Google Scholar 

  79. Michels, T.: Solar Energy Utilization. Van Nostrand Reinhold, New York (1979)

    Google Scholar 

  80. WHO (World Health Organization). Environmental Health Criteria 14: Ultraviolet Radiation. WHO, Geneva (1979)

    Google Scholar 

  81. Akinjiola, O.P., Balachandran, U.: Mass-heater supplemented greenhouse dryer for post-harvest preservation in developing countries. J. Sustain. Dev. 5(10), 40–49 (2012)

    Article  Google Scholar 

  82. Bansal, N.K., Garg, H.P.: Solar crop drying. In: Mujumdar, A.S. (ed.) Advances in Drying, Hemisphere Publishing Corporation, Washington, DC, vol. 4, pp. 279–358 (1987)

    Google Scholar 

  83. Imre, L.: Solar drying. In: Mujumdar, A.S. (ed.) Handbook of Industrial Drying, 3rd edn, pp. 307–361. CRC Press, Boca Raton (2007)

    Google Scholar 

  84. Sankat, C.K., Mujaffar, S.: Sun and solar cabinet drying of salted shark fillets. In: 14th International Drying Symposium (IDS’2004), São Paulo, Brazil, vol. C, pp. 1584–1591 (2004)

    Google Scholar 

  85. Weiss, W., Buchinger, J.: Solar drying. Training course within the scope of the project: establishment of a production, sales and consulting infrastructure for solar thermal plants in Zimbabwe, Arbeitsgemeinschaft ERNEUERBARE ENERGIE Institute for Sustainable Technologies: AEEIntec, Austria Development Corporation, Gleisdorf, Austria. p. 110. Retrieved from http://www.aee-intec.at/0uploads/dateien553.pdf. Accessed 12 April 2015

  86. Ogheneruona, D.E., Yusuf, M.O.L.: Design and fabrication of a direct natural convection solar dryer for tapioca. Leonardo Electr. J. Pract. Technol. 10(18), 95–104 (2011)

    Google Scholar 

  87. Gibriel, A.Y., El-Sahrigi, A.F., Rasmy, N.M., Heikal, Y.A., Ibrahim, H.K.: Dehydration of apricots and grapes using solar dehydration. In: 12th International Drying Symposium (IDS’2000), Noordwijkerhout, The Netherlands, Paper No. 392 (2000)

    Google Scholar 

  88. Sablani, S,S., Rahman, M.S., Mahgoub, O., Al-Marzouki, A.S.: Sun and solar drying of fish sardines. In: 13th International Drying Symposium (IDS’2002), Beijing, China, vols. A, B and C, Paper No. 1662 (2002)

    Google Scholar 

  89. Sakin, M., Mcminn, W.A.M., Magee, T.R.A.: Drying behaviour of biscuit baking in convectional and combined microwave and convectional ovens. In: 13th International Drying Symposium (IDS’2002), Beijing, China, vols. A, B and C, Paper No. 1676 (2002)

    Google Scholar 

  90. Darvishi, H., As, A.R., Asghari, A., Najafi, G., Gazori, H.A.: Mathematical modeling, moisture diffusion, energy consumption and efficiency of thin layer drying of potato slices. J. Food Process. Technol. 4(3), 1–6 (2013)

    Article  Google Scholar 

  91. Li, X.J., Zhang, B.-G., Li, W.J.: Microwave-vacuum drying of wood: model formulation and verification. Dry. Technol. 26, 1382–1387 (2008)

    Article  Google Scholar 

  92. Dinčov, D.D., Parrott, K.A., Pericleous, K.A.: Heat and mass transfer in two-phase porous materials under intensive microwave heating. J. Food Eng. 65, 403–412 (2004)

    Google Scholar 

  93. Karaaslan, S.N., Tunçer, I.K.: Development of a drying model for combined microwave–fan-assisted convection drying of spinach. Biosyst. Eng. 100, 44–52 (2008)

    Article  Google Scholar 

  94. Kowalski, S.J., Rajewska, K., Rybicki, A.: Stresses generated during convective and microwave drying. In: 14th International Drying Symposium (IDS’2004), São Paulo, Brazil, vol. A, pp. 351–358 (2004)

    Google Scholar 

  95. Chen, P., Schimidt, P.S.: Mathematical modeling of dielectrically—enhanced drying. In: Turner, I., Mujumdar, A.S. (eds.) Mathematical Modeling and Numerical Techniques in Drying Technology, pp. 439–479. Marcel Dekker Inc, New York (1997)

    Google Scholar 

Download references

Acknowledgments

The authors would like to express their thanks to CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil), CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil), and FINEP (Financiadora de Estudos e Projetos, Brazil) for supporting this work; to the authors of the references in this paper that helped in our understanding of this complex subject, and to the Editors by the opportunity given to present our research in this book.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Barbosa de Lima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Barbosa de Lima, A.G., Delgado, J.M.P.Q., Silva, E.G., de Farias Neto, S.R., Santos, J.P.S., de Lima, W.M.P.B. (2016). Drying Process in Electromagnetic Fields. In: Delgado, J., Barbosa de Lima, A. (eds) Drying and Energy Technologies. Advanced Structured Materials, vol 63. Springer, Cham. https://doi.org/10.1007/978-3-319-19767-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19767-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19766-1

  • Online ISBN: 978-3-319-19767-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics