Skip to main content

Heat and Mass Transfer, Energy and Product Quality Aspects in Drying Processes Using Infrared Radiation

  • Chapter
  • First Online:
Drying and Energy Technologies

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 63))

Abstract

The high cost of the energy consumption in conventional drying plants has encouraged the search for more economically attractive drying technologies that provide improvements in energy utilization, in order to accelerate the process and to reduce operating costs. The aim of this chapter is to highlight through experimental studies the pros and cons of using IR radiation, and its applicability for drying different types of materials. Two case studies are presented, involving the use of infrared radiation alone or combined to forced air convection in drying processes of different grains and seeds. The performance of the drying systems, in terms of drying kinetics, energy consumption and seed quality is evaluated and compared to that from conventional hot-air convection dryer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barbosa Neto, A.M., Marques, L.G., Prado, M.M.: Mass transfer in infrared drying of gel-coated seeds. Adv. Chem. Eng. Sci. 4, 39–48 (2014)

    Article  Google Scholar 

  2. Blanc, D., Laurent, P.J., Gerard, F., Andrieu, J.: Experimental infrared drying study of a model water-based epoxy-amine painting coated on iron support. Drying Technol. 15(6–8), 1787–1799 (1997)

    Article  Google Scholar 

  3. Borel, L. D. M. S.: Application of infrared heating assisted fluidized bed dryer for processing bee pólen. MSc Dissertation, pp. 149 (2014) (In Portuguese)

    Google Scholar 

  4. Brandão, R.J., Santos, L.D.M., Marques, L.G., Prado, M.M.: Heat and mass transfer and energy aspects in combined infrared-convective drying of bee-pollen. Defect Diffus. Forum 364, 9–17 (2015)

    Article  Google Scholar 

  5. Brazil: Regras para análise de sementes. (1st ed.). Brasília: Ministério da Agricultura, Pecuária e Abastecimento (2009)

    Google Scholar 

  6. Chua, K.J., Chou, S.K., Mujumdar, A.S., Ho, J.C., Hon, C.K.: Radiant-convective drying of osmotic treated agro-products: effect on drying kinetics and product quality. Food Control 15, 145–158 (2004)

    Article  Google Scholar 

  7. Chunthaworn, S., Achariyaviriya, S., Namsanguan, S.: Color kinetics of longan flesh drying at high temperature. Procedia Eng 32, 104–111 (2012)

    Article  Google Scholar 

  8. Crank, J.: The mathematics of diffusion, 2nd edn. Clarendon Press, London (1975)

    Google Scholar 

  9. Das, I., Das, S.K., Bal, S.: Drying kinetics of high moisture paddy undergoing vibration-assisted infrared (IR) drying. J. Food Eng. 95(1), 166–171 (2009)

    Article  Google Scholar 

  10. Dondee, S., Meeso, N., Soponronnarit, S., Siriamornpun, S.: Reducing cracking and breakage of soybean grains under combined near-infrared radiation and fluidized-bed drying. J. Food Eng. 104, 6–13 (2011)

    Article  Google Scholar 

  11. Dostie, M., Seguin, J.N., Maure, D., Tonthat, Q.A., Chatingy, R.: Preliminary measurements on the drying of thick porous materials by combinations of intermittent infrared and continuous convection heating. In: Mujumdar, A.S., Roques, M.A. (eds.) Drying’89. Hemisphere Press, New York (1989)

    Google Scholar 

  12. Fletcher, R.: Practical methods of optimization, 2nd edn. Wiley, London (2001)

    MATH  Google Scholar 

  13. Glouannec, P., Salagnac, P., Guézenoc, H., Allanic, N.: Experimental study of infrared-convective drying of hydrous ferrous sulphate. Powder Technol. 187(3), 280–288 (2008)

    Article  Google Scholar 

  14. Hammouda, I., Mihoubi, D.: Comparative numerical study of kaolin clay with three drying methods: Convective, convective–microwave and convective infrared modes. Energy Convers. Manag. 87, 832–839 (2014)

    Article  Google Scholar 

  15. Hashemi, G., Mowla, D., Kazemeini, M.: Moisture diffusivity and shrinkage of broad beans during bulk drying in an inert medium fluidized bed dryer assisted by dielectric heating. J. Food Eng. 92(3), 331–338 (2009)

    Article  Google Scholar 

  16. Kajtna, J., Sebenik, U., Krajnc, M., Golob, J.: IR drying of water-based acrylic PSA adhesives. Drying Technol. 26(3), 323–333 (2008)

    Article  Google Scholar 

  17. Kocabiyik, H., Tezer, D.: Drying of carrot slices using infrared radiation. Int. J. Food Sci. Technol. 44(5), 953–959 (2009)

    Article  Google Scholar 

  18. Kowalski, S.J., Rajewska, K.: Convective drying enhanced with microwave and infrared radiation. Drying Technol. 27(7–8), 878–887 (2009)

    Article  Google Scholar 

  19. Kowalski, S.J., Rajewska, K.: Effectiveness of hybrid drying. Chem. Eng. Process. 48(8), 1302–1309 (2009)

    Article  Google Scholar 

  20. Krishnamurthy, K., Khurana, H.K., Jun, S., Irudayaraj, J., Demirci, A.: Infrared heating in food processing: an overview. Compr. Rev Food Sci. Food Saf. 7, 1–13 (2008)

    Article  Google Scholar 

  21. Le Person, S., Puiggali, J.R., Baron, M., Roques, M.: Near infrared drying of pharmaceutical thin films: experimental analysis of internal mass transport. Chem. Eng. Process. 37(3), 257–263 (1998)

    Article  Google Scholar 

  22. Mayor, L., Sereno, A.M.: Modelling shrinkage during convective drying of food materials: a review. J. Food Eng. 61, 373–386 (2004)

    Article  Google Scholar 

  23. Mihoubi, D., Timoumi, S., Zagrouba, F.: Modelling of convective drying of carrot slices with IR heat source. Chem. Eng. Process. 48, 808–815 (2009)

    Article  Google Scholar 

  24. Montgomery, D.C.: Design and Analysis of Experiments. Wiley, USA (1997)

    MATH  Google Scholar 

  25. Motevali, A., Minaei, S., Khoshtagaza, M.H.: Evaluation of energy consumption in different drying methods. Energy Convers. Manag. 52, 1192–1199 (2011)

    Article  Google Scholar 

  26. Mujumdar, A.S.: Principles, classification and selection of dryers. In: Mujumdar, A. (ed.) Handbook of Industrial Drying, 4th edn, pp. 3–30. CRC Press, Florida (2015)

    Google Scholar 

  27. Niamnuy, C., Nachaisin, M., Poomsa, N., Devahastin, S.: Kinetics modeling of drying and conversion/degradation of isoflavones during infrared drying of soybean. Food Chem. 133, 946–952 (2012)

    Article  Google Scholar 

  28. Nuthong, P., Achariyaviriya, A., Namsanguan, K., Achariyaviriya, S.: Kinetics and modeling of whole longan with combined infrared and hot air. J. Food Eng. 102(3), 233–239 (2011)

    Article  Google Scholar 

  29. Palou, E., López-Malo, A., Barbosa-Cánovas, G.V., Welti-Chanes, J., Swanson, B.G.: Polyphenoloxidase activity and color of blanched and high hydrostatic pressure treated banana puree. J. Food Sci. 64, 42–45 (1999)

    Article  Google Scholar 

  30. Pan, Z., Khir, R., Godfrey, L.D., Lewis, R., Thompson, J.R., Salim, A.: Feasibility of simultaneous rough rice drying and disinfestations by infrared radiation heating and rice milling quality. J. Food Eng. 84, 469–479 (2008)

    Article  Google Scholar 

  31. Pathare, P.B., Sharma, G.P.: Effective Moisture Diffusivity of Onion Slices undergoing Infrared Convective Drying. Biosyst. Eng. 93(3), 285–291 (2006)

    Article  Google Scholar 

  32. Pawar, S.B., Kumar, P.S.R., Mujumdar, A.S., Thorat, B.N.: Infrared-convective drying of organic pigments. Drying Technol. 26(3), 315–322 (2008)

    Article  Google Scholar 

  33. Perea-Flores, M.J., Garibay-Febles, V., Chanona-Perez, J.J., Calderon-Dominguez, G., Mendez-Mendez, J.V., Palacios-Gonzalez, E., Gutierrez-Lopez, G.F.: Mathematical modelling of castor oil seeds (Ricinus communis) drying kinetics in fluidized bed at high temperatures. Ind. Crops Prod. 38, 64–71 (2012)

    Article  Google Scholar 

  34. Perussello, C.A., Kumar, C., Castilhos, F., Karim, M.A.: Heat and mass transfer modeling of the osmo-convective drying of yacon roots (Smallanthus sonchifolius). Appl. Therm. Eng. 63, 23–32 (2014)

    Article  Google Scholar 

  35. Putranto, A., Chen, X.D., Webley, P.A.: Infrared and convective drying of thin layer of polyvinyl alcohol (PVA)/glycerol/water mixture—The reaction engineering approach (REA). Chem. Eng. Process. 49, 348–357 (2010)

    Article  Google Scholar 

  36. Ratti, C., Mujumdar, A.S.: Infrared Drying. In: Mujumdar, A.S. (ed.) Handbook of industrial drying, 4th edn, pp. 405–420. CRC Press, Florida (2015)

    Google Scholar 

  37. Salagnac, P., Glouannec, P., Le Charpentier, D.: Numerical modeling of heat and mass transfer in porous medium during combined hot air, infrared and microwaves drying. Int. J. Heat Mass Transf. 47, 4479–4489 (2004)

    Article  MATH  Google Scholar 

  38. Sandu, C.: Infrared radiative drying in food engineering: a process analysis. Biotechnol. Prog. 2(3), 109–119 (1986)

    Article  Google Scholar 

  39. Santos, C. J. R.: Drying of sunflowerseeds using infrared radiation and forced hot air convection MSc dissertation, pp. 75 (2009) (In Portuguese)

    Google Scholar 

  40. Seyed-Yagoobi, J., Wirtz, J.W.: An experimental study of gas-fired infrared drying of paper. Drying Technol. 19(6), 1099–1112 (2001)

    Article  Google Scholar 

  41. Wanyo, P., Siriamornpun, S., Meeso, N.: Improvement of quality and antioxidant properties of dried mulberry leaves with combined far-infrared radiation and air convection in Thai tea process. Food Bioprod. Process. 89(1), 22–30 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoel M. Prado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Brandão, R.J., Borel, L.D.M.S., Marques, L.G., Prado, M.M. (2016). Heat and Mass Transfer, Energy and Product Quality Aspects in Drying Processes Using Infrared Radiation. In: Delgado, J., Barbosa de Lima, A. (eds) Drying and Energy Technologies. Advanced Structured Materials, vol 63. Springer, Cham. https://doi.org/10.1007/978-3-319-19767-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19767-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19766-1

  • Online ISBN: 978-3-319-19767-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics