Skip to main content

Abstract

This chapter presents a design automation approach that generates automatically error-free area and parasitic optimized layout views of output power stages consisting of multiple power MOSFETs. The tool combines a multitude of constraints associated with DRC, DFM, ESD rules, current density limits, heat distribution, and placement. It uses several optimization steps based on evolutionary computation techniques that precede a bottom-up layout construction of each power MOSFET, its optimization for area and parasitic minimization, and its optimal placement within the output stage power topology network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liew, B.K., Cheung, N.W., Hu, C.: Effects of self-heating on integrated circuit metallization lifetimes. In: IEDM Technical Digest., Washington, pp. 323–326 (1989)

    Google Scholar 

  2. Semenov, O., Vassighi, A., Sachdev, M.: Impact of Self-Heating Effect on Long-Term Reliability and Performance Degradation in CMOS Circuits. IEEE Trans. Device Mater. Reliab. 6(1), 17–27 (2006)

    Article  Google Scholar 

  3. Tam, W.C., Blanton, S.: To DFM or not to DFM? In: IEEE Proceedings of the 48th Design Automation Conference, pp. 65–70, June 2011

    Google Scholar 

  4. Tien, L.C., Tang, J.J., Chang, M.C.: An automatic layout generator for I/O cells. In: Proceedings of the 5th International Workshop on System-on-Chip for Real-Time Applications, pp. 295–300, July 2005

    Google Scholar 

  5. Ming, C., Na, B.: An efficient and flexible embedded memory IP compiler. In: Proceedings of International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery, pp. 268–273, Oct 2012

    Google Scholar 

  6. Kelly, M., Servais, G., Diep, T., Lin, D., Twerefour, S., Shah, G.: A comparison of electrostatic discharge models and failure signatures for CMOS integrated circuit devices. In: Proceedings of the Electrical Overstress/Electrostatic Discharge Symposium, pp. 175–185, Sept 1995

    Google Scholar 

  7. Franell, E., Drueen, S., Gossner, H., Schmitt-Landsiedel, D.: ESD full chip simulation: HBM and CDM requirements and simulation approach. Adv. Radio Sci. 6(10), 245–251 (2008)

    Article  Google Scholar 

  8. Suman, B., Kumar, P.: A survey of simulated annealing as a tool for single and multiobjective optimization. J. Oper. Res. Soc. 57, 1143–1160 (2006)

    Article  MATH  Google Scholar 

  9. Alpert, C.J., Mehta, D.P., Sapatnekar, S.S. (eds.): Handbook of algorithms for physical automation. CRC Press, Boca Raton. ISBN:10: 0849372429, ISBN:13: 978–0849372421 (2009)

    Google Scholar 

  10. Martins, R., Lourenco, N., Horta, N.: LAYGEN II—automatic layout generation of analog integrated circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 32(11), 1641–1654 (2013)

    Google Scholar 

  11. Lall, P.: Tutorial: temperature as an input to microelectronics—reliability models. IEEE Trans. Reliab. 45(1), 3–9 (1996)

    Article  Google Scholar 

  12. Pedram, M., Nazarian, S.: Thermal modeling, analysis, and management in VLSI circuits: principles and methods. Proc. IEEE 94(8), 1487–1501 (2006)

    Article  Google Scholar 

  13. Bechtold, T., Rudnyi, E., Korvink, J.: Dynamic electro-thermal simulation of microsystems—a review. J. Micromech. Microeng. 15(11), R17–R31 (2005)

    Article  Google Scholar 

  14. Batty, W., Christoffersen, C., Panks, A., David, S., Snowden, C., Steer, M.: Electrothermal CAD of power devices and circuits with fully physical time-dependent compact thermal modeling of complex nonlinear 3-d Systems. IEEE Trans. Compon. Packag. Technol. 24(4), 566–590 (2001)

    Article  Google Scholar 

  15. Han, Y., Koren, I.: Simulated annealing based temperature aware floorplanning. J Low Power Electron. 3(2), 1–15 (2007)

    Article  Google Scholar 

  16. Ardestani, E., Ziabari, A., Shakouri, A., Renau, J.: Enabling power density and thermal-aware floorplanning. In: Proceeding of Semiconductor Thermal Measurement and Management Symposium, pp. 302–307, Mar 2012

    Google Scholar 

  17. Song, T., Sturcken, N., Athikulwongse, K., Shepard, K., Lim, S.K.: Thermal analysis and optimization of 2.5-D integrated voltage regulator. In: IEEE 21st Conference on Electrical Performance of Electronic Packaging and Systems, pp. 25–28 (2012)

    Google Scholar 

  18. Ning, P., Wang, F., Ngo, K.D.T.: Automatic layout design for power module. IEEE Trans. Power Electron. 481–487 (2013)

    Google Scholar 

  19. Logan, S., Guthaus, M.R.: Fast thermal-aware floorplanning using white-space optimization. 17th IFIP International Conference on Very Large Scale Integration, pp. 65–70 (2009)

    Google Scholar 

  20. Ng, W.T., Chang, M., Yoo, A., Langer, J., Hedquist, T., Schweiss, H.: High speed CMOS output stage for integrated DC-DC converters. In: Proceedings of 9th International Conference on Solid-State and Integrated-Circuit Technology, pp. 1909–1912, Oct 2008

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Guilherme .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Guilherme, D., Guilherme, J., Horta, N. (2015). Automatic Layout Optimizations for Integrated MOSFET Power Stages. In: Fakhfakh, M., Tlelo-Cuautle, E., Siarry, P. (eds) Computational Intelligence in Analog and Mixed-Signal (AMS) and Radio-Frequency (RF) Circuit Design. Springer, Cham. https://doi.org/10.1007/978-3-319-19872-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19872-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19871-2

  • Online ISBN: 978-3-319-19872-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics