Skip to main content

Characterization of Beams Separable in Cartesian Coordinates

  • Chapter
  • First Online:
Optical Beam Characterization via Phase-Space Tomography

Part of the book series: Springer Theses ((Springer Theses))

  • 351 Accesses

Abstract

As we have discussed in Chap. 1, the characterization of 2D beams is a complex problem requiring the acquisition and processing of huge volume of data. Any hypothesis about the beam spatial structure, and specially those that can be experimentally checked, has to be used in order to simplify this task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Alieva, A. Cámara, J.A. Rodrigo, M.L. Calvo, Experimental reconstruction of Wigner distribution. In OSA Annual Meeting Proceedings, 2009

    Google Scholar 

  2. T. Alieva, A. Cámara, J.A. Rodrigo, M.L. Calvo, in Optical and Digital Image Processing, chapter Phase-space tomography of optical beams. (Wiley-VCH, New york, 2011)

    Google Scholar 

  3. T. Alieva, A. Cámara, J.A. Rodrigo, M.L. Calvo, Projections of Wigner distribution for optical beam characterization. In PIERS Proceedings of Progress in Electromagnetic Research Symposium (2012)

    Google Scholar 

  4. A. Cámara, T. Alieva, Phase-space tomography for separable optical fields. In ICO Proceedings (2008)

    Google Scholar 

  5. A. Cámara, T. Alieva, J.A. Rodrigo, M.L. Calvo, Phase space tomography reconstruction of the Wigner distribution for optical beams separable in cartesian coordinates. J. Opt. Soc. Am. A 26(6), 1301–1306 (2009)

    Google Scholar 

  6. A. Cámara, T. Alieva, J.A. Rodrigo, M.L. Calvo, Reconstrucción de la distribución de Wigner mediante tomografía en el espacio de fases. In IX Reunión Nacional de Óptica, (2009)

    Google Scholar 

  7. A. Cámara, T. Alieva, J.A. Rodrigo, M.L. Calvo. Beam characterization via Wigner distribution projections. In 4th Tematic PRISMA Meeting, (2010)

    Google Scholar 

  8. A. Cámara, Jos A. Rodrigo, T. Alieva, Optical coherenscopy based on phase-space tomography. Opt. Express 21(11), 13169–13183 (2013)

    Article  ADS  Google Scholar 

  9. Y. Qiu, H. Guo, Zhaoxi Chen, Paraxial propagation of partially coherent Hermite-Gauss beams. Opt. Commun. 245(16), 21–26 (2005)

    Article  ADS  Google Scholar 

  10. J. Rodrigo, T. Alieva, María L. Calvo, Gyrator transform: properties and applications. Opt. Express 15(5), 2190 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Cámara .

Appendices

Appendices

3.7 Demonstration of the Separability Test

The separability test affirms that a beam for which all its fractional power spectra satisfy

$$\begin{aligned} \left[ \int \mathrm {d}x~S^{\gamma ,-\gamma }\left( \mathbf {r}\right) \right] \left[ \int \mathrm {d}y~S^{\gamma ,-\gamma }\left( \mathbf {r}\right) \right] = S^{\gamma ,-\gamma }\left( \mathbf {r}\right) \int \mathrm {d}\mathbf {r}^\prime ~S^{\gamma ,-\gamma }\left( \mathbf {r}^\prime \right) . \end{aligned}$$
(3.20)

must be separable in Cartesian coordinates. Introducing the FRFT kernel in both left- and right-hand sides of Eq. (3.20) we obtain that:

$$\begin{aligned} \mathrm {LHS}\left( \mathbf {r}\right)&\equiv \left[ \int \mathrm {d}x~S^{\gamma ,-\gamma }\left( \mathbf {r}\right) \right] \left[ \int \mathrm {d}y~S^{\gamma ,-\gamma }\left( \mathbf {r}\right) \right] \nonumber \\&= c_{\gamma }\int \mathrm {d}\mathbf {r}_1\mathrm {d}\mathbf {r}_2~\exp \left\{ \frac{\mathrm {i}\pi }{\sigma ^2\sin \gamma }\left[ \left( x_1^2 - x_2^2\right) \cos \gamma - 2\left( x_1 - x_2\right) x\right] \right\} \nonumber \\&\qquad \times \exp \left\{ -\frac{\mathrm {i}\pi }{\sigma ^2\sin \gamma }\left[ \left( y_1^2 - y_2^2\right) \cos \gamma - 2\left( y_1-y_2\right) y\right] \right\} \nonumber \\&\qquad \times \int \mathrm {d}x^\prime \Gamma \left( x^\prime ,y_1,x^\prime ,y_2\right) \int \mathrm {d}y^\prime ~\Gamma \left( x_1,y^\prime ,x_2,y^\prime \right) \end{aligned}$$
(3.21)

and

$$\begin{aligned} \mathrm {RHS}\left( \mathbf {r}\right)&\equiv S^{\gamma ,-\gamma }\left( \mathbf {r}\right) \int \mathrm {d}\mathbf {r}^\prime ~S^{\gamma ,-\gamma }\left( \mathbf {r}^\prime \right) \nonumber \\&= c_\gamma \int \mathrm {d}\mathbf {r}_1\mathrm {d}\mathbf {r}_2~\exp \left\{ \frac{\mathrm {i}\pi }{\sigma ^2\sin \gamma }\left[ \left( x_1^2 - x_2^2\right) \cos \gamma - 2\left( x_1 - x_2\right) x\right] \right\} \nonumber \\&\qquad \times \exp \left\{ -\frac{\mathrm {i}\pi }{\sigma ^2\sin \gamma }\left[ \left( y_1^2 - y_2^2\right) \cos \gamma - 2\left( y_1-y_2\right) y\right] \right\} \nonumber \\&\qquad \times \Gamma \left( x_1,y_1,x_2,y_2\right) \int \mathrm {d}\mathbf {r}^\prime ~\Gamma \left( \mathbf {r}^\prime , \mathbf {r}^\prime \right) , \end{aligned}$$
(3.22)

where \(c_\gamma \) is a transformation constant that depends on \(\gamma \) and the Parseval theorem has been applied to relate

$$\begin{aligned} \int \mathrm {d}\mathbf {r}^\prime ~S^{\gamma ,-\gamma }\left( \mathbf {r}\right) = \int \mathrm {d}\mathbf {r}^\prime ~S^{0,0}\left( \mathbf {r}^\prime \right) = \int \mathrm {d}\mathbf {r}^\prime ~\Gamma \left( \mathbf {r}^\prime ,\mathbf {r}^\prime \right) . \end{aligned}$$
(3.23)

As this condition must be held for all angles \(\gamma \), it is equivalent to

$$\begin{aligned}&\int \mathrm {d}x^\prime \Gamma \left( x^\prime ,y_1,x^\prime ,y_2\right) \int \mathrm {d}y^\prime ~\Gamma \left( x_1,y^\prime ,x_2,y^\prime \right) \nonumber \\&\qquad \qquad = \Gamma \left( x_1,y_1,x_2,y_2\right) \int \mathrm {d}\mathbf {r}^\prime ~\Gamma \left( \mathbf {r}^\prime , \mathbf {r}^\prime \right) . \end{aligned}$$
(3.24)

The essence of the demonstration is to deduce that any beam that satisfies Eq. (3.24) must be separable.

Consider a beam described by the MI \(\Gamma \left( \mathbf {r}_1,\mathbf {r}_2\right) \) which is not separable, but satisfies Eq. (3.24). Consider the following two functions obtained via

$$\begin{aligned} A\left( x_1,x_2\right)&= \int \mathrm {d}y^\prime ~\Gamma \left( x_1,y^\prime ,x_2,y^\prime \right) , \end{aligned}$$
(3.25)
$$\begin{aligned} B\left( y_1,y_2\right)&= \int \mathrm {d}x^\prime ~\Gamma \left( x^\prime ,y_1,x^\prime ,y_2\right) . \end{aligned}$$
(3.26)

Thus, Eq. (3.24) can be rewritten as

$$\begin{aligned} A\left( x_1,x_2\right) B\left( y_1,y_2\right)&= \Gamma \left( \mathbf {r}_1,\mathbf {r}_2\right) \int \mathrm {d}x^\prime A\left( x^\prime ,x^\prime \right) \nonumber \\&= \Gamma \left( \mathbf {r}_1,\mathbf {r}_2\right) \int \mathrm {d}y^\prime B\left( y^\prime ,y^\prime \right) . \end{aligned}$$
(3.27)

Notice that the power of the beam can be expressed as

$$\begin{aligned} P&= \int \mathrm {d}\mathbf {r}^\prime ~\Gamma \left( \mathbf {r}^\prime ,\mathbf {r}^\prime \right) = \int \mathrm {d}x^\prime ~A\left( x^\prime ,x^\prime \right) = \int \mathrm {d}y^\prime ~B\left( y^\prime ,y^\prime \right) \nonumber \\&= \sqrt{\int \mathrm {d}x^\prime ~A\left( x^\prime ,x^\prime \right) } \sqrt{\int \mathrm {d}y^\prime ~B\left( y^\prime ,y^\prime \right) }. \end{aligned}$$
(3.28)

Dividing both sides of Eq. (3.27) by the energy we obtain

$$\begin{aligned} \frac{A\left( x_1,x_2\right) }{\sqrt{\int \mathrm {d}x^\prime ~A\left( x^\prime ,x^\prime \right) }} \frac{B\left( y_1,y_2\right) }{\sqrt{\int \mathrm {d}y^\prime ~B\left( y^\prime ,y^\prime \right) }} = \Gamma \left( \mathbf {r}_1,\mathbf {r}_2\right) . \end{aligned}$$
(3.29)

This is the separability condition of our starting beam, which was considered not separable. Therefore, by reductio ad absurdum, a beam satisfying Eq. (3.24), or Eq. (3.20) for every \(\gamma \), has to be separable.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cámara, A. (2015). Characterization of Beams Separable in Cartesian Coordinates. In: Optical Beam Characterization via Phase-Space Tomography. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-19980-1_3

Download citation

Publish with us

Policies and ethics