Skip to main content

Broadband Seed Generation

  • Chapter
  • First Online:
Third-Generation Femtosecond Technology

Part of the book series: Springer Theses ((Springer Theses))

  • 1032 Accesses

Abstract

A major requirement for developing the OPCPA systems discussed in Chap. 1, is the availability of seed pulses with a broadband spectrum, a well-behaved spectral phase, and preferably a stable carrier envelope phase (CEP).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This section is adapted from Fattahi et al. (2013).

References

  • Ishii N, Turi L, Yakovlev VS, Fuji T, Krausz F, Baltuska A, Butkus R, Veitas G, Smilgevicius V, Danielius R, Piskarskas A (2005) Multimillijoule chirped parametric amplification of few-cycle pulses. Opt Lett 30(5):567–569

    Google Scholar 

  • Telle HR, Steinmeyer G, Dunlop AE, Stenger J, Sutter DH, Keller U (2014) Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation. Appl Phys B 69(4):327–332

    Article  ADS  Google Scholar 

  • Teisset C, Ishii N, Fuji T, Metzger T, Kohler S, Baltuska A, Krausz F, Zheltikov AM (2005) All-optical pump-seed synchronization for few-cycle OPCPA. In: (CLEO) Conference on Lasers and Electro-Optics, 2005, pp. 25–27. vol 1. IEEE

    Google Scholar 

  • Tessiet C (2009) Few-cycle high-repetition-rate optical parametric amplifiers and their synchronisation schemes. PhD thesis

    Google Scholar 

  • Schwarz A, Ueffing M, Deng Y, Xu G, Fattahi H, Metzger T, Ossiander M, Krausz F, Kienberger R (2012) Active stabilization for optically synchronized optical parametric chirped pulse amplification. Opt Express 20(5):5557–5565

    Google Scholar 

  • Fattahi H, Teisset CY, Pronin O, Sugita A, Graf R, Pervak V, Xun G, Metzger T, Major Z, Krausz F, Apolonski A (2012) Pump-seed synchronization for MHz repetition rate, high-power optical parametric chirped pulse amplification. Opt Express 20(9):9833–9840

    Google Scholar 

  • Tavella F, Marcinkevičius A, Krausz F (2006) Investigation of the superfluorescence and signal amplification in an ultrabroadband multiterawatt optical parametric chirped pulse amplifier system. New J Phys 8(10):2191–21911

    Article  Google Scholar 

  • Pronin O, Brons J, Grasse C, Pervak V, Boehm G, Amann M-C, Kalashnikov VL, Apolonski A, Krausz F (2011) High-power 200 fs Kerr-lens mode-locked Yb:YAG thin-disk oscillator. Opt lett 36(24):4746–4748

    Article  ADS  Google Scholar 

  • Seidel M, Brons J, Fedulova E, Pervak V, Apolonski A, Pronin O, Krausz F (2014) High-power few-cycle pulse generation by spectral broadening in bulk material. In: CLEO: 2014 Postdeadline Paper Digest. OSA, Washington, D.C., STh5C.9

    Google Scholar 

  • Pronin O, Seidel M, Brons J, Lücking F, Pervak V, Apolonski A, Udem T, Krausz F (2013) Carrier-envelope phase stabilized thin-disk oscillator. In: Huber G, Moulton P (ed) Advanced solid-state lasers congress. OSA, Washington, D.C. AF3A.5

    Google Scholar 

  • Bradler M, Baum P, Riedle E (2009) Femtosecond continuum generation in bulk laser host materials with sub-\(\mu \)J pump pulses. Appl Phys B 97(3):561–574

    Google Scholar 

  • Silva F, Austin DR, Thai A, Baudisch M, Hemmer M, Faccio D, Couairon A, Biegert J (2012) Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal. Nat commun 3(May):8071–8075

    Google Scholar 

  • Knight JC, Birks TA, Russell PS, Atkin DM (1997) All-silica single-mode optical fiber with photonic crystal cladding: errata. Opt Lett 22(7):484–485

    Google Scholar 

  • Birks TA, Knight JC, Russell PS (1997) Endlessly single-mode photonic crystal fiber. Opt Lett 22(13):961–963

    Google Scholar 

  • Dudley JM, Coen S (2006) Supercontinuum generation in photonic crystal fiber. Rev Mod Phys 78(4):1135–1184

    Article  ADS  Google Scholar 

  • Südmeyer T, Brunner F, Innerhofer E, Paschotta R, Furusawa K, Baggett JC, Monro TM, Richardson DJ, Keller U (2003) Nonlinear femtosecond pulse compression at high average power levels by use of a large-mode-area holey fiber. Opt lett 28(20):1951–1953

    Article  ADS  MATH  Google Scholar 

  • Robinson J, Haworth C, Teng H, Smith R, Marangos J, Tisch J (2006) The generation of intense, transform-limited laser pulses with tunable duration from 6 to 30 fs in a differentially pumped hollow fibre. Appl Phys B 85(4):525–529

    Google Scholar 

  • Nisoli M, Stagira S, De Silvestri S, Svelto O, Sartania S, Cheng Z, Lenzner M, Spielmann C, Krausz F (1997) A novel-high energy pulse compression system: generation of multigigawatt sub-5-fs pulses. Appl Phys B: Lasers Opt 65(2):189–196

    Google Scholar 

  • Nisoli M, De Silvestri S, Svelto O (1996) Generation of high energy 10 fs pulses by a new pulse compression technique. Appl Phys Lett 68(20):2793–2795

    Article  ADS  Google Scholar 

  • Wei Z, Hao T, Chen-Xia Y, Xin Z, Xun H, Zhi-Yi W (2010) Generation of sub-2 cycle optical pulses with a differentially pumped hollow fiber. Chin. Phys Lett 27(5):0542111–0542114

    Google Scholar 

  • Cavalieri AL, Goulielmakis E, Horvath B, Helml W, Schultze M, Fieß M, Pervak V, Veisz L, Yakovlev VS, Uiberacker M, Apolonski A, Krausz F, Kienberger R (2007) Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua. New J Phys 9(7):2421–2429

    Article  Google Scholar 

  • Minkovski N, Petrov GI, Saltiel SM, Albert O, Etchepare J (2004) Nonlinear polarization rotation and orthogonal polarization generation experienced in a single-beam configuration. J Opt Soc Am B 21(9):1659–1664

    Article  ADS  Google Scholar 

  • Jullien A, Albert O, Burgy F, Hamoniaux G, Rousseau J-P, Chambaret J-P, Augé-Rochereau F, Chériaux G, Etchepare J, Minkovski N, Saltiel SM (2005) 10-10 temporal contrast for femtosecond ultraintense lasers by cross-polarized wave generation. Optics Lett 30(8):920–922

    Google Scholar 

  • Taha TR, Ablowitz MI (1984) Analytical and numerical aspects of certain nonlinear evolution equations. II. Numerical, nonlinear Schrödinger equation. J Comput Phys 55(2):203–230

    Google Scholar 

  • Jullien A, Albert O, Chériaux G, Etchepare J, Kourtev S, Minkovski N, Saltiel SM (2006) A two crystal arrangement to fight efficiency saturation in cross-polarized wave generation. Opt Express 14(7):2760–2769

    Google Scholar 

  • Lenzner M, Krüger J, Sartania S, Cheng Z, Spielmann Ch, Mourou G, Kautek W, Krausz F (1998) Femtosecond optical breakdown in dielectrics. Phys Rev Lett 80(18):4076–4079

    Google Scholar 

  • Schwarz A (2014) Few-cycle phase-stable infrared OPCPA. PhD thesis

    Google Scholar 

  • Bakker HJ, Cho GC, Kurz H, Wu Q, Zhang X-C (1998) Distortion of terahertz pulses in electro-optic sampling. J Opt Soc Am B 15(6), 1795–1801

    Google Scholar 

  • Kato K (1986) Second-harmonic generation to 2048 A in beta-Ba\(B_2O_4\). IEEE J Quantum Electron 22(7):1013–1014

    Google Scholar 

  • Brabec T, Krausz F (1997) Nonlinear optical pulse propagation in the single-cycle regime. Phys Rev Lett 78(17):3282–3285

    Google Scholar 

  • Manzoni C, Cerullo G, De Silvestri S (2004) Ultrabroadband self-phase-stabilized pulses by difference-frequency generation. Opt Lett 29(22):2668–2670

    Google Scholar 

  • Moses J, Suchowski H, Kärtner FX (2012) Fully efficient adiabatic frequency conversion of broadband Ti:sapphire oscillator pulses. Opt lett 37(9):1589–1591

    Google Scholar 

  • Homann C, Bradler M, Förster M, Hommelhoff P, Riedle E (2012) Carrier-envelope phase stable sub-two-cycle pulses tunable around 1.8 \({\mu } {\rm {m}}\) at 100 kHz. Opt lett 37(10):1673–1675

    Google Scholar 

  • Doumy G, Quéré F, Gobert O, Perdrix M, Martin P (2004) Complete characterization of a plasma mirror for the production of high-contrast ultraintense laser pulses. Phys Rev E 69(2):026402–026414

    Google Scholar 

  • Renault A, Augé-Rochereau F, Planchon T, D’Oliveira P, Auguste T, Chériaux G, Chambaret J-P (2005) ASE contrast improvement with a non-linear filtering Sagnac interferometer. Opt Commun 248(4-6):535–541

    Google Scholar 

  • Ricci A, Silva F, Jullien A, Cousin SL, Austin DR, Biegert J, Lopez-Martens R (2013) Generation of high-fidelity few-cycle pulses at 2.1 mm via cross-polarized wave generation. Opt Express 21(8):9711–9721

    Google Scholar 

  • Liu J, Kobayashi T (2010) Generation and amplification of tunable multicolored femtosecond laser pulses by using cascaded four-wave mixing in transparent bulk media. Sensors 10(5):4296–4341 (Basel, Switzerland)

    Google Scholar 

  • Cotel A, Jullien A, Forget N, Albert O, Chériaux G, Le Blanc C (2006) Nonlinear temporal pulse cleaning of a 1-\(\mu \)m optical parametric chirped-pulse amplification system. Appl Phys B 83(1):7–10

    Google Scholar 

  • Fattahi H, Schwarz A, Keiber S, Karpowicz N (2013) Efficient, octave-spanning difference-frequency generation using few-cycle pulses in simple collinear geometry. Opt lett 38(20):4216–4219

    Google Scholar 

  • Canova L, Kourtev S, Minkovski N, Jullien A, Lopez-Martens R, Albert O, Saltiel SM (2008) Efficient generation of cross-polarized femtosecond pulses in cubic crystals with holographic cut orientation. Appl Phys Lett 92(23):231102

    Article  ADS  Google Scholar 

  • Newport Corporation (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanieh Fattahi .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fattahi, H. (2016). Broadband Seed Generation. In: Third-Generation Femtosecond Technology. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-20025-5_3

Download citation

Publish with us

Policies and ethics