Skip to main content

Utilization Alternatives of Algal Wastes for Solid Algal Products

  • Chapter
Algal Biorefineries

Abstract

Recently, there is a growing interest in utilization of algae to produce biofuels and valuable products. In order to use algal biomass effectively and decrease cost of the algal processes, researches on utilization of algal wastes for different purposes are carried out. Valuable algal products can be obtained from algal wastes and used in energy, food and environmental applications. Thermochemical processes are the most common methods for conversion of algal wastes to solid products such as algal biochar and algal activated carbon which can be used as energy source, adsorbent and soil improver. This chapter is especially focused on investigation of conversion potentials of algal wastes, which remain after various industrial processes and producing valuable solid products and also direct usage areas of algal wastes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aksu Z, Ertuğrul S, Dönmez G (2010) Methylene Blue biosorption by Rhizopus arrhizus: effect of SDS (sodium dodecylsulfate) surfactant on biosorption properties. Chem Eng J 158:474–481

    Article  CAS  Google Scholar 

  • Altenor S, Ncibi MC, Emmanuel E et al (2012) Textural characteristics, physiochemical properties and adsorption efficiencies of Caribbean alga Turbinaria turbinata and its derived carbonaceous materials for water treatment application. Biochem Eng J 67:35–44

    Article  CAS  Google Scholar 

  • Anoop Singh A, Nigamb P, Murphy J (2011) Mechanism and challenges in commercialisation of algal biofuels. Bioresour Technol 102:26–34

    Article  PubMed  Google Scholar 

  • Aravindhan R, Rao JR, Nair BU (2009) Preparation and characterization of activated carbon from marine macro-algal biomass. J Hazard Mater 162:688–694

    Article  CAS  PubMed  Google Scholar 

  • Atkinson CJ, Fitzgerald JD, Hipss NA (2010) Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil 337:1–18

    Article  CAS  Google Scholar 

  • Aygün A (2002) Production of activated carbon from domestic natural raw materials and investigation of adsorption properties. Master thesis, İTÜ, İstanbul

    Google Scholar 

  • Azner JZ (2011) Characterization of activated carbon produced from coffee residues by chemical and physical activation. Master Thesis, Chemical Engineering, Sweden, Stockholm

    Google Scholar 

  • Beesley L, Moreno-Jiménez E, Gomez-Eyles JL et al (2011) A Review of biochar’s potential role in the remediation, revegetation and restoration of contaminated soils. Environ Pollut 159:3269–3282

    Article  CAS  PubMed  Google Scholar 

  • Belarbi EH, Molina EY (2000) A process for high yield and scaleable recovery of high purity eicosapentaenoic acid esters from microalgae and fish oil. Process Biochem 35:951–969

    Article  CAS  Google Scholar 

  • Besada V, Andrade JM, Schultze F et al (2009) Heavy metals in edible seaweeds commercialised for human consumption. J Mar Syst 75:305–313

    Article  Google Scholar 

  • Bird MI, Wurster CM, de Paula Silva PH et al (2011) Algal biochar – production and properties. Bioresour Technol 102:1886–1891

    Article  CAS  PubMed  Google Scholar 

  • Bitoga JP, Lee IB, Lee CG et al (2011) Application of computational fluid dynamics for modeling and designing photobioreactors for microalgae production. Comput Electron Agric 76:131–147

    Article  Google Scholar 

  • Bridgwater AV, Bridge SA (1991) Biomass pyrolysis liquids upgrading and utilization. Elsevier Applied Science, New York

    Book  Google Scholar 

  • Çeçen F (2011) Water and wastewater treatment: historical perspective of activated carbon adsorption and its integration with biological processes. In: Çeçen F, Aktaş Ö (eds) Activated carbon for water and wastewater treatment: integration of adsorption and biological treatment, 1st edn. Wiley-VCH, Weinheim

    Chapter  Google Scholar 

  • Chaiwong K, Kiatsiriroat T, Vorayos N et al (2012) Biochar production from freshwater algae by slow pyrolysis. Maejo Int J Sci Technol 6(02):186–195

    CAS  Google Scholar 

  • Cheng-Wu Z, Zmora O, Kopel R et al (2001) An industrial-size flat plate glass reactor for mass production of Nannochloropsis sp. (Eustigmatophyceae). Aquaculture 195:35–49

    Article  CAS  Google Scholar 

  • Cho HJ, Baek K, Jeon JK et al (2013) Removal characteristics of copper by marine macro-algae-derived chars. Chem Eng J 217:205–211

    Article  CAS  Google Scholar 

  • Choi J, Choi JW, Suh DJ et al (2014) Production of brown algae pyrolysis oils for liquid biofuels depending on the chemical pretreatment methods. Energ Conversv Manage 86:371–378

    Article  CAS  Google Scholar 

  • Daroch M, Geng S, Wang G (2013) Recent advances in liquid biofuel production from algal feedstocks. Appl Energ 102:1371–1381

    Article  Google Scholar 

  • De Mule MCZ, de Caire GZ et al (1999) Effect of cyanobacterial inoculation and fertilizers on rice seedlings and postharvest soil structure. Commun Soil Sci Plant Anal 30(1–2):97–107

    Article  Google Scholar 

  • Dittert IM, Vilar VJP, da Silva EAB et al (2012) Adding value to marine macro-algae Laminaria digitata through its use in the separation and recovery of trivalent chromium ions from aqueous solution. Chem Eng J 193–194:348–357

    Article  Google Scholar 

  • Dittert IM, Brandão HL, Pina F et al (2014) Integrated reduction/oxidation reactions and sorption processes for Cr(VI) removal from aqueous solutions using Laminaria digitata macro-algae. Chem Eng J 237:443–454

    Article  CAS  Google Scholar 

  • Duku MH, Gua S, Haganb EB (2011) Biochar production potential in Ghana—a review. Renew Sust Energ Rev 15:3539–3551

    Article  Google Scholar 

  • El Nemr A, El-Sikaily A, Khaled A et al (2011) Removal of toxic chromium from aqueous solution, wastewater and saline water by marine red alga Pterocladia capillacea and its activated carbon. Arab J Chem. doi:10.1016/j.arabjc.2011.01.016

    Google Scholar 

  • Elmacı A, Yonar T, Özengin N et al (2005) The Investigation of biosorption characteristics of dried Chara sp., Cladophora sp. and Chlorella sp. for the removal of zn(II), cd(II), co(II) and remazol turkish blue-g in aqueous solutions. Ekoloji 55:24–31

    Google Scholar 

  • El-Sikaily A, El Nemr A, Khaled A et al (2007) Removal of toxic chromium from wastewater using green alga Ulva lactuca and its activated carbon. J Hazard Mater 148:216–228

    Article  CAS  PubMed  Google Scholar 

  • El-Sikaily A, El Nemr A, Khaled A (2011) Copper sorption onto dried red alga Pterocladia capillacea and its activated carbon. Chem Eng J 168:707–714

    Article  CAS  Google Scholar 

  • Esmaeili A, Ghasemi S (2009) Evaluation of the activated carbon prepared of algae marine gracilaria for the biosorption of ni (II) from aqueous solutions. World Appl Sci J 6(4):515–518

    CAS  Google Scholar 

  • Esmaeili A, Ghasemi S, Rustaiyan A (2010) Removal of hexavalent chromium using activated carbons derived from marine algae gracilaria and sargassum sp. J Mar Sci Technol 18(4):587–592

    Google Scholar 

  • Ferrera-Lorenzo N, Fuente E, Bermudez JM et al (2014a) Conventional and microwave pyrolysis of a macroalgae waste from the Agar–Agar industry. Prospects for bio-fuel production. Bioresour Technol 151:199–206

    Article  CAS  PubMed  Google Scholar 

  • Ferrera-Lorenzo N, Fuente E, Suárez-Ruiz I et al (2014b) KOH activated carbon from conventional and microwave heating system of a macroalgae waste from the Agar–Agar industry. Fuel Process Technol 121:25–31

    Article  CAS  Google Scholar 

  • Ferrera-Lorenzo N, Fuente E, Suárez-Ruiz I et al (2014c) Sustainable activated carbons of macroalgae waste from the Agar–Agar industry. Prospects as adsorbent for gas storage at high pressures. Chem Eng J 250:128–136

    Article  CAS  Google Scholar 

  • Gaskin JW et al (2007) Potential for pyrolysis char to affect soil moisture and nutrient status of a loamy sand soil. Proceedings of the 2007 Georgia water resources conference, Ürdün, 27–29 Mar 2007

    Google Scholar 

  • Gendy TS, El-Temtamy SA (2013) Commercialization potential aspects of microalgae for biofuel production: an overview. Egypt J Pet 22:43–51

    Article  Google Scholar 

  • Goldstein IS (1983) Organic chemicals from biomass. CRC, Florida (Second Printing)

    Google Scholar 

  • Gong X, Zhang B, Zhang Y et al (2014) Investigation on pyrolysis of low lipid microalgae chlorella vulgaris and dunaliella salina. Energy Fuels 28:95–103

    Article  CAS  Google Scholar 

  • Gourdon R, Bhende S, Rus E et al (1990) Comparison cadmium biosorption by gram-positive and gram-negative bacteria from activated sludge. Biotechnol Lett 12(11):839–842

    Article  CAS  Google Scholar 

  • Grierson S, Strezov V, Ellem G et al (2009) Thermal characterisation of microalgae under slow pyrolysis conditions. J Anal Appl Pyrol 85:118–123

    Article  CAS  Google Scholar 

  • Grierson S, Strezov V, Shah P (2011) Properties of oil and char derived from slow pyrolysis of tetraselmis chui. Bioresour Technol 102:8232–8240

    Article  CAS  PubMed  Google Scholar 

  • Guedes AC, Malcata FX (2012) Nutritional value anduses of microalgae in aquaculture. In: Muchlisin ZA (ed) Aquaculture. InTech, Crotia. ISBN 978-953-307-974-5

    Google Scholar 

  • Guedes AC, Amaro HM et al (2011) Microalgae as sources of high added-value compounds—a brief review of recent work. Biotechnol Prog 27(3):597–613

    Article  CAS  PubMed  Google Scholar 

  • Guedes AC, Amaro HM, Sousa-Pint I et al (2014) Applications of spent biomass. In: Pandey A, Lee DJ, Chisti Y, Rsoccol C (eds) Biofuels from algae. Elsevier. ISBN: 978-0-444-59558-4

    Google Scholar 

  • Harun R, Singh M, Forde GM et al (2010) Bioprocess engineering of microalgae to produce a variety of consumer products. Renew Sust Energ Rev 14:1037–1047

    Article  CAS  Google Scholar 

  • Haykiri-Acma H, Yaman S, Kucukbayrak S (2013) Production of biobriquettes from carbonized brown seaweed. Fuel Process Technol 106:33–40

    Article  CAS  Google Scholar 

  • Huang CP, Huang CP, Morehart AL (1990) The removal of Cu(II) from dilute aqueous solution by Saccharomyces cerevisiae. Wat Res 24:433–439

    Article  CAS  Google Scholar 

  • Hudek K, Davis LC, Ibbini J (2014) Commercial products from algae. In: Bajpai R, Prokop A, Zappi M (eds) Algal biorefineries volume 1: cultivation of cells and products. Springer, Dordrecht. ISBN 978-94-007-7493-3

    Google Scholar 

  • Jeyakumar RPS, Chandrasekaran V (2014) Adsorption of lead(II) ions by activated carbons prepared from marine green algae: equilibrium and kinetics studies. Int J Ind Chem 5:2

    Article  Google Scholar 

  • Jirka S, Tomlinson T (2014) 2013 State of the biochar industry, a survey of commercial activity in the biochar field. A report by the International Biochar Initiative (IBI)

    Google Scholar 

  • Jung KA, Lim SR, Kim Y et al (2013) Potentials of macroalgae as feedstocks for biorefinery. Bioresour Technol 135:182–190

    Article  CAS  PubMed  Google Scholar 

  • Kan T, Grierson S, de Nys R et al (2014) Comparative assessment of the thermochemical conversion of freshwater and marine micro- and macroalgae. Energy Fuels 28:104–114

    Article  CAS  Google Scholar 

  • Kebelmann K, Hornung A, Karsten U et al (2013) Thermo-chemical behaviour and chemical product formation from Polar seaweeds during intermediate pyrolysis. J Anal Appl Pyrol 104:131–138

    Article  CAS  Google Scholar 

  • Kılıç M (2004) Examination of lead (II) and mercury (II) ions adsorption on biomass. phd thesis, Süleyman Demirel University, Isparta

    Google Scholar 

  • Kim SS, Ly HV, Kim J et al (2013) Thermogravimetric characteristics and pyrolysis kinetics of alga Sagarssum sp. biomass. Bioresour Technol 139:242–248

    Article  CAS  PubMed  Google Scholar 

  • Kirtania K, Joshua J, Kassim MA et al (2014) Comparison of CO2 and steam gasification reactivity of algal and woody biomass chars. Fuel Process Technol 117:44–52

    Article  CAS  Google Scholar 

  • Knight JA (1976) Pyrolysis of fine sawdust. 172nd American Chemical Society national meeting, San Francisco

    Google Scholar 

  • Kraan S (2012) Algal polysaccharides, novel applications and Outlook. In: Chang C (ed) Carbohydrates–comprehensive studies on glycobiology and glycotechnology. InTech, Crotia. ISBN 978-953-51-0864-1

    Google Scholar 

  • Kwapinski W, Byrne CMP, Kryachko E et al (2010) Biochar from biomass and waste. Waste Biomass Valor 1:177–189

    Article  CAS  Google Scholar 

  • Lehmann J, Joseph S (2009) Biochar for environmental management, 1st edn. Earthscan, Londra, pp 1–2

    Google Scholar 

  • Liu Y, Cao Q, Luo F et al (2009) Biosorption of Cd2+, Cu2+, Ni2+ and Zn2+ ions from aqueous solutions by pretreated biomass of brown algae. J Hazard Mater 163:931–938

    Article  CAS  PubMed  Google Scholar 

  • Maddi B, Viamajala S, Varanasi S (2011) Comparative study of pyrolysis of algal biomass from natural lake blooms with lignocellulosic biomass. Bioresour Technol 102:11018–11026

    Article  CAS  PubMed  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. J Renew Sust Ener 14(1):217–232

    Article  CAS  Google Scholar 

  • McClellan T, Deenik J, Uehara G et al (2007) Effects of flashed carbonized macadamia nutshell charcoal on plant growth and soil chemical properties. ASA-CSSA-SSA ınternational annual meetings, New Orleans, LA

    Google Scholar 

  • McLaughlin H, Anderson PS, Shields FE et al (2009) All biochars are not created equal, and how to tell them apart. Proceedings North American Biochar Conference, Boulder, CO

    Google Scholar 

  • Miao X, Wu Q, Yang C (2004) Fast pyrolysis of microalgae to produce renewable fuels. J Anal Appl Pyrol 71:855–863

    Article  CAS  Google Scholar 

  • Murthy GS (2011) Overview and assessment of algal biofuels production technologies biofuels: alternative feedstocks and conversion processes. In: Pandey A, Larroche C, Ricke RS, Dussap CG, Gnansounou E (eds). Elsevier. ISBN: 978-0-12-385099-7

    Google Scholar 

  • Nakas JPS, Parkinson CM, Coonley CE et al (1983) System development for linked-fermentation production of solvents from algal biomass. Appl Environ Microb 46:1017–1023

    CAS  Google Scholar 

  • Nakiboğlu A, Sevindir HC (2006) Biosorption of Crom ions with various algae from leather industry wastewater. SDÜ Fen Bilimleri Enstitüsü Dergisi 10(2)

    Google Scholar 

  • Ncibi MC, Jeanne-Rose V, Mahjoub B et al (2009) Preparation and characterisation of raw chars and physically activated carbons derived from marine Posidonia oceanica (L.) fibres. J Hazard Mater 165:240–249

    Article  CAS  PubMed  Google Scholar 

  • Olaizola M (2003) Commercial development of microalgal biotechnology: from the test tube to the marketplace. Biomol Eng 20:459–466

    Article  CAS  PubMed  Google Scholar 

  • Özçimen D (2007) Evaluation of various vegetable residues by carbonization. PhD thesis, Istanbul Technical University

    Google Scholar 

  • Özçimen D (2013) An approach to the characterization of biochar and bio-oil. Renewable Energy for Sustainable Future, iConcept Press, pp 41–58

    Google Scholar 

  • Özçimen D, Gülyurt MÖ, İnan B (2012) Algal biorefinery for biodiesel production. In: Fang Z (ed) Biodiesel – feedstocks, production and applications. InTech, Crotia. ISBN 978-953-51-0910-5

    Google Scholar 

  • Radakovits R, Jinkerson RE, Darzins A et al (2010) Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell 9:486–501

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rashida N, Rehmana MSU, Han JI (2013) Recycling and reuse of spent microalgal biomass for sustainable biofuels. Biochem Eng J 75:101–107

    Article  Google Scholar 

  • Rondon MA, Lehmann J, Ramirez J et al (2007) Biological nitrogen fixation by common beans (phaseolus vulgaris l.) increases with bio-char additions. Biol Fertil Soils 43:699–708

    Article  Google Scholar 

  • Ronsse F, Van Hecke S, Nachenius R et al (2011) Production and characterisation of slow pyrolysis biochar. In Proceedings of the 19th European biomass conference and exhibition, Berlin, Germany, pp 1681–1685

    Google Scholar 

  • Ross AB, Jones JM, Kubacki ML et al (2008) Classification of macroalgae as fuel and its thermochemical behavior. Bioresour Technol 99:6494–6504

    Article  CAS  PubMed  Google Scholar 

  • Ross AB, Anastasakis K, Kubacki ML et al (2009) Investigation of the pyrolysis behaviour of brown algae before and after pre-treatment using PY-GC/MS and TGA. J Anal Appl Pyrolysis 85:3–10

    Article  CAS  Google Scholar 

  • Ruperez P (2002) Mineral content of edible marine seaweeds. Food Chem 79:23–26

    Article  CAS  Google Scholar 

  • Ruperez P, Ahrazem O et al (2002) Potential antioxidant capacity of sulfated polysaccharides from the edible marine brown seaweed Fucus vesiculosus. J Agric Food Chem 50(4):840–845

    Article  CAS  PubMed  Google Scholar 

  • Şahan T (2008) Removal of some heavy metals from wastewaters via biosorption and optimization of biosorption conditions. Phd thesis, Yüzüncü Yıl University, Van

    Google Scholar 

  • Salima A, Benaouda B, Noureddine B et al (2013) Application of Ulva lactuca and Systoceira stricta algae-based activated carbons to hazardous cationic dyes removal from industrial effluents. Wat Res 47:3375–3388

    Article  CAS  Google Scholar 

  • Sarı A, Tuzen M (2008a) Biosorption of cadmium(II) from aqueous solution by red algae (Ceramium virgatum): equilibrium, kinetic and thermodynamic studies. J Hazard Mater 157:448–454

    Article  PubMed  Google Scholar 

  • Sarı A, Tuzen M (2008b) Biosorption of Pb(II) and Cd(II) from aqueous solution using green alga (Ulva lactuca) biomass. J Hazard Mater 152:302–308

    Article  PubMed  Google Scholar 

  • Schwartz D, Krienitz L (2005) Do algae cause growth-promoting effects on vegetables grown hydroponically? In: Price MR (ed) Fertigation: optimizing the utilization of water and nutrients. International Potash Institute, Beijing, pp 161–170

    Google Scholar 

  • Sohi SP, Krull E, Lopez-Capel E et al (2010) Advances in agronomy, Ith edn. Elsevier/Academic, Burlington

    Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E et al (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    Article  CAS  PubMed  Google Scholar 

  • Thorsen M, Woodward S et al (2010) Kelp (Laminaria digitata) increases germination and affects rooting and plant vigour in crops and native plants from an arable grassland in the Outer Hebrides. Scotland J Coast Conservat 14(3):239–247

    Article  Google Scholar 

  • Topsak E (2011) Pyrolysis process effects on the structural properties of biomass and its functional group distribution. Master thesis, ITU, İstanbul

    Google Scholar 

  • Tuzen M, Sarı A (2010) Biosorption of selenium from aqueous solution by green algae (Cladophora hutchinsiae) biomass: equilibrium, thermodynamic and kinetic studies. Chem Eng J 158:200–206

    Article  CAS  Google Scholar 

  • USDA (2001) Agricultural research service. Nutrient Database for Standard Reference, Release 14

    Google Scholar 

  • Valente LMP, Gouveia A et al (2006) Evaluation of three seaweeds Gracilaria bursa-pastoris, Ulva rigida and Gracilaria cornea as dietary ingredients in European sea bass (Dicentrarchus labrax) juveniles. Aquaculture 252(1):85–91

    Article  Google Scholar 

  • Veglio F, Beolchini F (1997) Removal of metals by biosorption: a review. Hydrometallurgy 44:301–316

    Article  CAS  Google Scholar 

  • Vergara-Fernandez A, Vargas G, Alarcon N et al (2008) Evaluation of marine algae as a source of biogas in a two-stage anaerobic reactor system. Biomass Bioenerg 32:338–344

    Article  CAS  Google Scholar 

  • Vijayaraghavan K, Yun YS (2008) Biosorption of C.I. Reactive Black 5 from aqueous solution using acid-treated biomass of brown seaweed Laminaria sp. Dyes Pigments 76:726–732

    Article  CAS  Google Scholar 

  • Vilar VJP, Botelho CMS, Boaventura RAR (2005) Influence of pH, ionic strength and temperature on lead biosorption by Gelidium and agar extraction algal waste. Process Biochem 40:3267–3275

    Article  CAS  Google Scholar 

  • Vilar VJP, Loureiro JM, Botelho CMS et al (2008a) Continuous biosorption of Pb/Cu and Pb/Cd in fixed-bed column using algae Gelidium and granulated agar extraction algal waste. J Hazard Mater 154:1173–1182

    Article  CAS  PubMed  Google Scholar 

  • Vilar VJP, Botelho CMS, Boaventura RAR (2008b) Kinetics modelling of biosorption by algal biomass from binary metal solutions using batch contactors. Biochem Eng J 38:319–325

    Article  CAS  Google Scholar 

  • Wen Z, Chen F (2003) Heterotrophic production of eicosapentaenoic acid by microalgae. Biotechnol Adv 21:273–294

    Article  CAS  PubMed  Google Scholar 

  • White LP, Plaskett LG (1981) Biomass as fuel. Academic, London

    Google Scholar 

  • Winsley P (2007) Biochar and bioenergy production for climate change mitigation. New Zeal Sci Rev 64(1):5–10

    Google Scholar 

  • Xiong Y, Xu J, Shan W et al (2013) A new approach for rhenium(VII) recovery by using modified brown algae Laminaria japonica adsorbent. Bioresour Technol 127:464–472

    Article  CAS  PubMed  Google Scholar 

  • Yanik J, Stahl R, Troeger N et al (2013) Pyrolysis of algal biomass. J Anal Appl Pyrol 103:134–141

    Article  CAS  Google Scholar 

  • Yen HW, Brune DE (2007) Anaerobic co-digestion of algal sludge and waste paper to produce methane. Bioresour Technol 98:130–134

    Article  CAS  PubMed  Google Scholar 

  • Yuan JH, Xu RK, Zhang H (2011) The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour Technol 102:3488–3497

    Article  CAS  PubMed  Google Scholar 

  • Zubia M, Payri C et al (2008) Alginate, mannitol, phenolic compounds and biological activities of two range-extending brown algae, Sargassum mangarevense and Turbinaria ornata (Phaeophyta: Fucales), from Tahiti (French Polynesia). J Appl Phycol 20(6):1033–1043

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didem Özçimen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Özçimen, D., İnan, B., Akış, S., Koçer, A.T. (2015). Utilization Alternatives of Algal Wastes for Solid Algal Products. In: Prokop, A., Bajpai, R., Zappi, M. (eds) Algal Biorefineries. Springer, Cham. https://doi.org/10.1007/978-3-319-20200-6_12

Download citation

Publish with us

Policies and ethics