Skip to main content

Excipients That Facilitate Amorphous Drug Stabilization

  • Chapter
  • First Online:
Excipient Applications in Formulation Design and Drug Delivery

Abstract

The importance of the amorphous state in studying bioavailability of poorly water-soluble drugs cannot be over-emphasized. The higher free energy and therefore the apparent high solubility of the amorphous phase are some of the advantages for promoting the amorphous phase, as compared to its crystalline counterpart. It is well known that the amorphous phase is thermodynamically unstable. This might result in the conversion of the metastable form to its stable crystalline form during storage. This conversion might also lead to product failure during storage owing to the poor dissolution properties of the crystalline form. Excipients can play a key role in preventing such a transformation during storage as well as maximizing the therapeutic efficacy of the amorphous material. This book chapter intends to highlight the delivery issues pertaining to amorphous drugs with a special emphasis on the most commonly used excipients in stabilizing amorphous drug substances in formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AI:

Amorphicity index

API:

Active pharmaceutical ingredient

ASD:

Amorphous solid dispersion

BCS:

Biopharmaceutics classification system

HPMC:

Hydroxyl propyl methyl cellulose

HPMCAS:

Hydroxyl propyl methyl cellulose acetate succinate

IMC:

Indomethacin

PAA:

Poly(acrylic acid)

PEG:

Polyethylene glycol

PSSA:

Poly(styrene sulfonic acid)

PVP:

Poly (vinyl pyrrolidone)

PVPVA:

Poly(vinylpyrrolidone-vinyl acetate)

pSi:

Porous silica particles

pSi-ox:

Oxidized porous silicon particles

SLS:

Sodium lauryl sulfate

Tg:

Glass transition temperature

References

  • Ahuja N, Katare OP, Singh B (2007) Studies on dissolution enhancement and mathematical modeling of drug release of a poorly water-soluble drug using water-soluble carriers. Eur J Pharm Biopharm 65(1):26–38

    Article  CAS  PubMed  Google Scholar 

  • Aizenberg J, Addadi L, Weiner S, Lambert G (1996) Stabilization of amorphous calcium carbonate by specialized macromolecules in biological and synthetic precipitates. Adv Mater 8(3):222–226

    Article  CAS  Google Scholar 

  • Arakawa T, Timasheff SN (1982) Stabilization of protein structure by sugars. Biochemistry 21(25):6536–6544

    Article  CAS  PubMed  Google Scholar 

  • Arakawa T, Timasheff SN (1983) Preferential interactions of proteins with solvent components in aqueous amino acid solutions. Arch Biochem Biophys 224 (1):169–177

    Article  CAS  PubMed  Google Scholar 

  • Arakawa T, Timasheff SN (1984) The mechanism of action of Na glutamate, lysine HCl, and piperazine-N, N’-bis(2-ethanesulfonic acid) in the stabilization of tubulin and microtubule formation. J Biol Chem 259(8):4979–4986

    CAS  PubMed  Google Scholar 

  • Arakawa T, Timasheff SN (1985) The stabilization of proteins by osmolytes. Biophys J 47(3):411–414

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Arakawa T, Kita Y, Carpenter JF (1991) Protein–solvent interactions in pharmaceutical formulations. Pharm Res 8(3):285–291

    Article  CAS  PubMed  Google Scholar 

  • Aso Y, Yoshioka S, Kojima S (2004) Molecular mobility-based estimation of the crystallization rates of amorphous nifedipine and phenobarbital in poly(vinylpyrrolidone) solid dispersions. J Pharm Sci 93(2):384–391

    Article  CAS  PubMed  Google Scholar 

  • Back JF, Oakenfull D, Smith MB (1979) Increased thermal stability of proteins in the presence of sugars and polyols. Biochemistry 18(23):5191–5196

    Article  CAS  PubMed  Google Scholar 

  • Bates TR (1969) Dissolution characteristics of reserpine-polyvinylpyrrolidone co-precipitates. J Pharm Pharmacol 21(10):710–712

    Article  CAS  PubMed  Google Scholar 

  • Bhardwaj SP, Suryanarayanan R (2012) Molecular mobility as an effective predictor of the physical stability of amorphous trehalose. Mol Pharm 9(11):3209–3217

    Article  CAS  PubMed  Google Scholar 

  • Bhardwaj SP, Arora KK, Kwong E, Templeton A, Clas SD, Suryanarayanan R (2013) Correlation between molecular mobility and physical stability of amorphous itraconazole. Mol Pharm 10(2):694–700

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya S, Suryanarayanan R (2009) Local mobility in amorphous pharmaceuticals–characterization and implications on stability. J Pharm Sci 98(9):2935–2953

    Article  CAS  PubMed  Google Scholar 

  • Bhugra C, Pikal MJ (2008) Role of thermodynamic, molecular, and kinetic factors in crystallization from the amorphous state. J Pharm Sci 97(4):1329–1349

    Article  CAS  PubMed  Google Scholar 

  • Bhugra C, Rambhatla S, Bakri A, Duddu SP, Miller DP, Pikal MJ, Lechuga-Ballesteros D (2007) Prediction of the onset of crystallization of amorphous sucrose below the calorimetric glass transition temperature from correlations with mobility. J Pharm Sci 96(5):1258–1269

    Article  CAS  PubMed  Google Scholar 

  • Bhugra C, Shmeis R, Krill SL, Pikal MJ (2008) Prediction of onset of crystallization from experimental relaxation times. II. Comparison between predicted and experimental onset times. J Pharm Sci 97(1):455–472

    Article  CAS  PubMed  Google Scholar 

  • Cai T, Zhu L, Yu L (2011) Crystallization of organic glasses: effects of polymer additives on bulk and surface crystal growth in amorphous nifedipine. Pharm Res 28(10):2458–2466

    Article  CAS  PubMed  Google Scholar 

  • Camp WHD (1986) Solid-state chemistry of drugs by Stephen R. Byrn. Academic Press, New York (1982. 346 + xii pp. 16 ×23.5 cm. ISBN 0-12-148620-6. $ 60.00. Powder Diffr 1(01):107–107)

    Article  Google Scholar 

  • Carpenter JF, Crowe JH (1988) The mechanism of cryoprotection of proteins by solutes. Cryobiology 25(3):244–255

    Article  CAS  PubMed  Google Scholar 

  • Carpenter JF, Crowe JH (1989) An infrared spectroscopic study of the interactions of carbohydrates with dried proteins. Biochemistry 28(9):3916–3922

    Article  CAS  PubMed  Google Scholar 

  • Chandwani A, Shuter J (2008) Lopinavir/ritonavir in the treatment of HIV-1 infection: a review. Ther Clin Risk Manage 4(5):1023

    CAS  Google Scholar 

  • Chiang Y-M, Pullen A, Meethong N (2007) Amorphous and partially amorphous nanoscale ion storage materials. WO Patent WO 2007/064934 A2

    Google Scholar 

  • Chiou WL, Niazi S (1973) Differential thermal analysis and X-ray diffraction studies of griseofulvin—succinic acid solid dispersions. J Pharm Sci 62(3):498–501

    Article  CAS  PubMed  Google Scholar 

  • Chiou WL, Riegelman S (1971) Pharmaceutical applications of solid dispersion systems. J Pharm Sci 60(9):1281–1302

    Article  CAS  PubMed  Google Scholar 

  • Costantino HR, Andya JD, Nguyen PA, Dasovich N, Sweeney TD, Shire SJ, Hsu CC, Maa YF (1998) Effect of mannitol crystallization on the stability and aerosol performance of a spray-dried pharmaceutical protein, recombinant humanized anti-IgE monoclonal antibody. J Pharm Sci 87(11):1406–1411

    Article  CAS  PubMed  Google Scholar 

  • Craig DQM, Royall PG, Kett VL, Hopton ML (1999) The relevance of the amorphous state to pharmaceutical dosage forms: glassy drugs and freeze dried systems. Int J Pharm 179(2):179–207

    Article  CAS  PubMed  Google Scholar 

  • Crowley K, Zografi G (2003) The effect of low concentrations of molecularly dispersed Poly(Vinylpyrrolidone) on Indomethacin crystallization from the amorphous state. Pharm Res 20(9):1417–1422

    Article  CAS  PubMed  Google Scholar 

  • Debenedetti PG, Stillinger FH (2001) Supercooled liquids and the glass transition. Nature 410(6825):259–267

    Article  CAS  PubMed  Google Scholar 

  • Deng W, Majumdar S, Singh A, Shah S, Mohammed NN, Jo S, Pinto E, Tewari D, Durig T, Repka MA (2013) Stabilization of fenofibrate in low molecular weight hydroxypropylcellulose matrices produced by hot-melt extrusion. Drug Dev Ind Pharm 39(2):290–298

    Article  CAS  PubMed  Google Scholar 

  • Derle D, Boddu SHS, Magar M. (2006) Studies on the preparation, characterization and solubility of b-Cyclodextrin—satranidazole inclusion complexes. Indian J Pharm Educ Res 40(4):232–236

    Google Scholar 

  • Donners JJJM, Heywood BR, Meijer EW, Nolte RJM, Roman C, Schenning APHJ, Sommerdijk NAJM (2000) Amorphous calcium carbonate stabilised by poly(propylene imine) dendrimers. Chem Commun 0(19):1937–1938

    Article  CAS  Google Scholar 

  • El-Egakey MA, Soliva M, Speiser P (1971) Hot extruded dosage forms. I. Technology and dissolution kinetics of polymeric matrices. Pharm Acta Helv 46(1):31

    CAS  PubMed  Google Scholar 

  • Estopa R, Ramirez J (1992) [Cavitated pulmonary mass in a 19-year-old male]. Med Clin 98(20):790–796

    CAS  Google Scholar 

  • Friesen DT, Shanker R, Crew M, Smithey DT, Curatolo WJ, Nightingale JA (2008) Hydroxypropyl methylcellulose acetate succinate-based spray-dried dispersions: an overview. Mol Pharm 5(6):1003–1019

    Article  CAS  PubMed  Google Scholar 

  • Gao P (2008) Amorphous pharmaceutical solids: characterization, stabilization, and development of marketable formulations of poorly soluble drugs with improved oral absorption. Mol Pharm 5(6):903–904

    Article  CAS  PubMed  Google Scholar 

  • Gerlsma SY (1968) Reversible denaturation of ribonuclease in aqueous solutions as influenced by polyhydric alcohols and some other additives. J Biol Chem 243(5):957–961

    CAS  PubMed  Google Scholar 

  • Gerlsma SY, Stuur ER (1972) The effect of polyhydric and monohydric alcohols on the heat-induced reversible denaturation of lysozyme and ribonuclease. Int J Pept Protein Res 4(6):377–383

    Article  CAS  PubMed  Google Scholar 

  • Goldberg AH, Gibaldi M, Kanig JL (1965) Increasing dissolution rates and gastrointestinal absorption of drugs via solid solutions and eutectic mixtures I. Theoretical considerations and discussion of the literature. J Pharm Sci 54(8):1145–1148

    Article  CAS  PubMed  Google Scholar 

  • Graeser KA, Patterson JE, Zeitler JA, Rades T (2010) The role of configurational entropy in amorphous systems. Pharmaceutics 2(2):224–244

    Google Scholar 

  • Gupta P, Kakumanu VK, Bansal AK (2004) Stability and solubility of celecoxib-PVP amorphous dispersions: a molecular perspective. Pharm Res 21(10):1762–1769

    Article  CAS  PubMed  Google Scholar 

  • Gupta P, Thilagavathi R, Chakraborti AK, Bansal AK (2005) Differential molecular interactions between the crystalline and the amorphous phases of celecoxib. J Pharm Pharmacol 57(10):1271–1278

    Article  CAS  PubMed  Google Scholar 

  • Habib MJ (2000) Pharmaceutical solid dispersion technology. CRC Press, USA

    Google Scholar 

  • Hancock BC, Zografi G (1997) Characteristics and significance of the amorphous state in pharmaceutical systems. J Pharm Sci 86(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Hikima T, Hanaya M, Oguni M (1999) Microscopic observation of a peculiar crystallization in the glass transition region and β-process as potentially controlling the growth rate in triphenylethylene. J Mol Struct 479(2–3):245–250

    Article  CAS  Google Scholar 

  • Hora M, Rana R, Smith F (1992) Lyophilized formulations of recombinant tumor necrosis factor. Pharm Res 9(1):33–36

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Wang J, Zhi Z, Jiang T, Wang S (2011) Facile synthesis of 3D cubic mesoporous silica microspheres with a controllable pore size and their application for improved delivery of a water-insoluble drug. J Colloid Interface Sci 363(1):410–417

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Dai W-G (2014) Fundamental aspects of solid dispersion technology for poorly soluble drugs. Acta Pharmaceutica Sinica B 4(1):18–25

    Article  PubMed  PubMed Central  Google Scholar 

  • Huttenrauch R (1974) Spritzgieβverfahren zur Herstellung peroraler Retardpraperate. Pharmazie 29:297–302

    CAS  PubMed  Google Scholar 

  • Ilevbare GA, Liu H, Edgar KJ, Taylor LS (2012) Inhibition of solution crystal growth of ritonavir by cellulose polymers—factors influencing polymer effectiveness. CrystEngComm 14(20):6503–6514

    Article  CAS  Google Scholar 

  • Ilevbare GA, Liu H, Edgar KJ, Taylor LS (2013) Impact of polymers on crystal growth rate of structurally diverse compounds from aqueous solution. Mol Pharm 10(6):2381–2393

    Article  CAS  PubMed  Google Scholar 

  • Ishida H, Wu T, Yu L (2007) Sudden rise of crystal growth rate of nifedipine near T(g) without and with polyvinylpyrrolidone. J Pharm Sci 96(5):1131–1138

    Article  CAS  PubMed  Google Scholar 

  • Izutsu K, Yoshioka S, Terao T (1993) Decreased protein-stabilizing effects of cryoprotectants due to crystallization. Pharm Res 10(8):1232–1237

    Article  CAS  PubMed  Google Scholar 

  • Izutsu K, Ocheda SO, Aoyagi N, Kojima S (2004) Effects of sodium tetraborate and boric acid on nonisothermal mannitol crystallization in frozen solutions and freeze-dried solids. Int J Pharm 273(1–2):85–93

    Article  CAS  PubMed  Google Scholar 

  • Jannesari M, Varshosaz J, Morshed M, Zamani M (2011) Composite poly (vinyl alcohol)/poly (vinyl acetate) electrospun nanofibrous mats as a novel wound dressing matrix for controlled release of drugs. Int J Nanomed 6:993–1003

    CAS  Google Scholar 

  • Janssens S, Van den Mooter G (2009) Review: physical chemistry of solid dispersions. J Pharmacy Pharmacol 6 (12):1571–1586

    Article  Google Scholar 

  • Janssens S, de Armas HN, Roberts CJ, Van den Mooter G (2008) Characterization of ternary solid dispersions of itraconazole, PEG 6000, and HPMC 2910 E5. J Pharm Sci 97(6):2110–2120

    Article  CAS  PubMed  Google Scholar 

  • Josef Pitha BMD (1988) Pharmaceutical preparations containing cyclodextrin derivatives. US Patent US 4727064

    Google Scholar 

  • Karanth H, Shenoy VS, Murthy RR (2006) Industrially feasible alternative approaches in the manufacture of solid dispersions: a technical report. AAPS PharmSciTech 7(4):E31–E38

    Article  PubMed Central  Google Scholar 

  • Kaushal AM, Gupta P, Bansal AK (2004a) Amorphous drug delivery systems: molecular aspects, design, and performance. Crit Rev Ther Drug Carr Syst 21(3):133–193

    Google Scholar 

  • Kaushal AM, Gupta P, Bansal AK (2004b) Amorphous drug delivery systems: molecular aspects, design, and performance. Crit Rev Ther Drug Carr Syst 21(3):133–193

    Article  CAS  Google Scholar 

  • Kawabata Y, Wada K, Nakatani M, Yamada S, Onoue S (2011) Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: Basic approaches and practical applications. Int J Pharm 420(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Kawakami K (2009) Current status of amorphous formulation and other special dosage forms as formulations for early clinical phases. J Pharm Sci 98(9):2875–2885

    Article  CAS  PubMed  Google Scholar 

  • Ken-ichi I, Sumie Y, Yasushi T (1991) The effects of additives on the stability of freeze-dried β-galactosidase stored at elevated temperature. Int J Pharm 71(1–2):137–146

    Article  Google Scholar 

  • Kestur US, Taylor LS (2010) Role of polymer chemistry in influencing crystal growth rates from amorphous felodipine. CrystEngComm 12(8):2390–2397

    Article  CAS  Google Scholar 

  • Kim JH, Choi HK (2002) Effect of additives on the crystallization and the permeation of ketoprofen from adhesive matrix. Int J Pharm 236(1–2):81–85

    Article  CAS  PubMed  Google Scholar 

  • Konno H, Taylor LS (2006) Influence of different polymers on the crystallization tendency of molecularly dispersed amorphous felodipine. J Pharm Sci 95(12):2692–2705

    Article  CAS  PubMed  Google Scholar 

  • Konno T, Kinuno K, Kataoka K (1986) Physical and chemical changes of medicinals in mixtures with adsorbents in the solid state. I. Effect of vapor pressure of the medicinals on changes in crystalline properties. Chem Pharm Bull (Tokyo) 34(1):301–307

    Article  CAS  Google Scholar 

  • Kotiyan PN, Vavia PR (2001) Eudragits: role as crystallization inhibitors in drug-in-adhesive transdermal systems of estradiol. Eur J Pharm Biopharma 52(2):173–180

    Article  CAS  Google Scholar 

  • Laitinen R, Lobmann K, Strachan CJ, Grohganz H, Rades T (2013) Emerging trends in the stabilization of amorphous drugs. Int J Pharm 453(1):65–79

    Article  CAS  PubMed  Google Scholar 

  • Law D, Krill SL, Schmitt EA, Fort JJ, Qiu Y, Wang W, Porter WR (2001) Physicochemical considerations in the preparation of amorphous ritonavir-poly(ethylene glycol) 8000 solid dispersions. J Pharm Sci 90(8):1015–1025

    Article  CAS  PubMed  Google Scholar 

  • Law D, Schmitt EA, Marsh KC, Everitt EA, Wang W, Fort JJ, Krill SL, Qiu Y (2004) Ritonavir-PEG 8000 amorphous solid dispersions: in vitro and in vivo evaluations. J Pharm Sci 93(3):563–570

    Article  CAS  PubMed  Google Scholar 

  • Li DX, Yan YD, Oh DH, Yang KY, Seo YG, Kim JO, Kim YI, Yong CS, Choi HG (2010) Development of valsartan-loaded gelatin microcapsule without crystal change using hydroxypropylmethylcellulose as a stabilizer. Drug Deliv 17(5):322–329

    Article  PubMed  Google Scholar 

  • Limnell T, Heikkila T, Santos HA, Sistonen S, Hellsten S, Laaksonen T, Peltonen L, Kumar N, Murzin DY, Louhi-Kultanen M, Salonen J, Hirvonen J, Lehto VP (2011) Physicochemical stability of high indomethacin payload ordered mesoporous silica MCM-41 and SBA-15 microparticles. Int J Pharm 416(1):242–251

    CAS  PubMed  Google Scholar 

  • Liu C, Desai KGH, Liu C, Park HJ (2004) Enhancement of dissolution rate of rofecoxib using solid dispersions with urea. Drug Dev Res 63(4):181–189

    Article  CAS  Google Scholar 

  • Löbmann K (2013) Co-amorphous drug delivery systems. Pharmaceutical Solid State Research Cluster 18–19

    Google Scholar 

  • Löbmann K Co-amorphous drug delivery systems featured

    Google Scholar 

  • Löbmann K, Laitinen R, Grohganz H, Gordon KC, Strachan C, Rades T (2011) Coamorphous drug systems: enhanced physical stability and dissolution rate of indomethacin and naproxen. Mol Pharm 8(5):1919–1928

    Article  PubMed  CAS  Google Scholar 

  • Lobmann K, Grohganz H, Laitinen R, Strachan C, Rades T (2013) Amino acids as co-amorphous stabilizers for poorly water soluble drugs—Part 1: Preparation, stability and dissolution enhancement. European journal of pharmaceutics and biopharmaceutics: official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV

    Google Scholar 

  • Lu E (2008) Stabilization of amorphous pharmaceuticals by excipients. University of Minnesota 65–70

    Google Scholar 

  • Lu Q, Zografi G (1998) Phase behavior of binary and ternary amorphous mixtures containing indomethacin, citric acid, and PVP. Pharm Res 15(8):1202–1206

    Article  CAS  PubMed  Google Scholar 

  • Mainde C, Nagori R, Boddu S (2007) Aqueous oral formulations of risperidone. Publication Number: WO/2007/138462

    Google Scholar 

  • Manning MC, Chou DK, Murphy BM, Payne RW, Katayama DS (2010) Stability of protein pharmaceuticals: an update. Pharm Res 27(4):544–575

    Article  PubMed  CAS  Google Scholar 

  • Masuda T, Yoshihashi Y, Yonemochi E, Fujii K, Uekusa H, Terada K (2012) Cocrystallization and amorphization induced by drug–excipient interaction improves the physical properties of acyclovir. Int J Pharm 422(1–2):160–169

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto T, Zografi G (1999) Physical properties of solid molecular dispersions of indomethacin with poly(vinylpyrrolidone) and poly(vinylpyrrolidone-co-vinyl-acetate) in relation to indomethacin crystallization. Pharm Res 16(11):1722–1728

    Article  CAS  PubMed  Google Scholar 

  • Milanese A, Nebuloni M, Carrano L (2013) A complex of amorphous tomoxiprole and cyclodextrin with fast dissolution rate and process for the preparation thereof. WO Patent WO 2013/004462 A1

    Google Scholar 

  • Miyazaki T, Yoshioka S, Aso Y, Kojima S (2004) Ability of polyvinylpyrrolidone and polyacrylic acid to inhibit the crystallization of amorphous acetaminophen. J Pharm Sci 93(11):2710–2717

    Article  CAS  PubMed  Google Scholar 

  • Mullins JD, Macek TJ (1960) Some pharmaceutical properties of novobiocin. J Am Pharm Assoc Am Pharm Assoc 49:245–248

    Article  CAS  PubMed  Google Scholar 

  • Neves NM, Campos R, Pedro A, Cunha J, Macedo F, Reis RL (2007) Patterning of polymer nanofiber meshes by electrospinning for biomedical applications. Int J Nanomed 2(3):433

    CAS  Google Scholar 

  • Pace CN (1990) Conformational stability of globular proteins. Trends Biochem Sci 15(1):14–17

    Article  CAS  PubMed  Google Scholar 

  • Paluch M, Roland CM, Pawlus S, ZioÅ‚o J, Ngai KL (2003) Does the Arrhenius temperature dependence of the johari-goldstein relaxation persist above ${T}_{g}$? Phys Rev Lett 91(11):115701

    Article  CAS  PubMed  Google Scholar 

  • Patel N (2011) Development and characterization of ternary solid dispersion granules of poorly water soluble drugs: diflunisal and mefenamic acid. The University of Toledo, 1–21

    Google Scholar 

  • Paufler P (1985) S. R. Elliott. Physics of amorphous materials. Longman Group Ltd., London, New York, 1984. Pp X + 386. Price: £ 25.00. ISBN 0-582-44636-8. Cryst Res Technol 20(9):1238–1238

    Article  Google Scholar 

  • Pikal MJ, Lukes AL, Lang JE, Gaines K (1978) Quantitative crystallinity determinations for β-lactam antibiotics by solution calorimetry: correlations with stability. J Pharm Sci 67(6):767–773

    Article  CAS  PubMed  Google Scholar 

  • Pikal MJ, Dellerman KM, Roy ML, Riggin RM (1991) The effects of formulation variables on the stability of freeze-dried human growth hormone. Pharm Res 8(4):427–436

    Article  CAS  PubMed  Google Scholar 

  • Pikal MJ, Dellerman K, Roy ML (1992) Formulation and stability of freeze-dried proteins: effects of moisture and oxygen on the stability of freeze-dried formulations of human growth hormone. Dev Biol Stand 74:21–37; discussion 37–28

    CAS  PubMed  Google Scholar 

  • Prestidge CA, Barnes TJ, Lau CH, Barnett C, Loni A, Canham L (2007) Mesoporous silicon: a platform for the delivery of therapeutics. Expert Opin Drug Deliv 4(2):101–110

    Article  CAS  PubMed  Google Scholar 

  • Qian KK, Bogner RH (2012) Application of mesoporous silicon dioxide and silicate in oral amorphous drug delivery systems. J Pharm Sci 101(2):444–463

    Article  CAS  PubMed  Google Scholar 

  • Qian F, Huang J, Hussain MA (2010) Drug-polymer solubility and miscibility: stability consideration and practical challenges in amorphous solid dispersion development. J Pharm Sci 99(7):2941–2947

    CAS  PubMed  Google Scholar 

  • Rogers TL, Hu J, Yu Z, Johnston KP, Williams III RO (2002a) A novel particle engineering technology: spray-freezing into liquid. Int J Pharm 242(1):93–100

    Article  CAS  PubMed  Google Scholar 

  • Rogers TL, Nelsen AC, Hu J, Brown JN, Sarkari M, Young TJ, Johnston KP, Williams III RO (2002b) A novel particle engineering technology to enhance dissolution of poorly water soluble drugs: spray-freezing into liquid. Eur J Pharm Biopharm 54(3):271–280

    Article  CAS  PubMed  Google Scholar 

  • Rowe RC et al (2006) Handbook of pharmaceutical excipients. vol 6. Pharmaceutical press, London

    Google Scholar 

  • Rumondor AC, Ivanisevic I, Bates S, Alonzo DE, Taylor LS (2009) Evaluation of drug-polymer miscibility in amorphous solid dispersion systems. Pharm Res 26(11):2523–2534

    Article  CAS  PubMed  Google Scholar 

  • Seil JT, Webster TJ (2011) Spray deposition of live cells throughout the electrospinning process produces nanofibrous three-dimensional tissue scaffolds. Int J Nanomed 6:1095–1099

    CAS  Google Scholar 

  • Sekiguchi K, Obi N (1961) Studies on absorption of eutectic mixture. I. A comparison of the behavior of eutectic mixture of sulfathiazole and that of ordinary sulfathiazole in man. Chem Pharm Bull 9(11):866–872

    Article  CAS  Google Scholar 

  • Shah B, Kakumanu VK, Bansal AK (2006) Analytical techniques for quantification of amorphous/crystalline phases in pharmaceutical solids. J Pharm Sci 95(8):1641–1665

    Article  CAS  PubMed  Google Scholar 

  • Shah N, Sandhu H, Choi DS, Kalb O, Page S, Wyttenbach N (2012) Structured development approach for amorphous systems. In: Formulating poorly water soluble drugs. AAPS Advances in the Pharmaceutical Sciences Series Springer, 3:267–310

    Google Scholar 

  • Shamblin SL, Huang EY, Zografi G (1996) The effects of co-lyophilized polymeric additives on the glass transition temperature and crystallization of amorphous sucrose. J Therm Anal Calorim 47(5):1567–1579

    Article  CAS  Google Scholar 

  • Sheth P, Sandhu H (2014) Amorphous solid dispersion using supercritical fluid technology. In: Shah N et al (eds) Amorphous Solid Dispersions, Springer New York. pp. 579–591

    Google Scholar 

  • Simonelli A, Mehta S, Higuchi W (1969) Dissolution rates of high energy Polyvinylpyrrolidone (PVP)-sulfathiazole coprecipitates. J Pharm Sci 58(5):538–549

    Article  CAS  PubMed  Google Scholar 

  • Sinha S, Chemistry UoKP (2008) Chemical and physical characterization of therapeutic proteins in solution and amorphous solids. University of Kansas

    Google Scholar 

  • Sotthivirat S, McKelvey C, Moser J, Rege B, Xu W, Zhang D (2013) Development of amorphous solid dispersion formulations of a poorly water-soluble drug, MK-0364. Int J Pharm 452(1):73–81

    Article  CAS  PubMed  Google Scholar 

  • Speiser P (1966) Galenische Aspekte der Arzneimittelwirkung. Pharmaceutica Acta Helvetiae 41(6):321–&

    Google Scholar 

  • Sridhar I, Doshi A, Joshi B, Wankhede V, Doshi J (2013) Solid dispersions: an approach to enhance solubility of poorly water soluble drug. J Sci Innov Res 2(3):685–694

    Google Scholar 

  • Sun Y, Zhu L, Wu T, Cai T, Gunn EM, Yu L (2012) Stability of amorphous pharmaceutical solids: crystal growth mechanisms and effect of polymer additives. AAPS J 14(3):380–388

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tang XC, Pikal MJ, Taylor LS (2002) A spectroscopic investigation of hydrogen bond patterns in crystalline and amorphous phases in dihydropyridine calcium channel blockers. Pharm Res 19(4):477–483

    Article  CAS  PubMed  Google Scholar 

  • Taylor LS, Zografi G (1997) Spectroscopic characterization of interactions between PVP and indomethacin in amorphous molecular dispersions. Pharm Res 14(12):1691–1698

    Article  CAS  PubMed  Google Scholar 

  • Telang C, Yu L, Suryanarayanan R (2003) Effective inhibition of mannitol crystallization in frozen solutions by sodium chloride. Pharm Res 20(4):660–667

    Article  CAS  PubMed  Google Scholar 

  • Thakkar FMV, Soni T, Gohel M (2009) Supercritical fluid technology: a promising approach to enhance the drug solubility. J. Pharm. Sci. Res 1(4):1–14.

    Google Scholar 

  • Timko RJ, Lordi NG (1984) Thermal analysis studies of glass dispersion systems. Drug Dev Ind Pharm 10(3):425–451

    Article  CAS  Google Scholar 

  • Torrado S, Torrado S (2002) Characterization of physical state of mannitol after freeze-drying: effect of acetylsalicylic acid as a second crystalline cosolute. Chem Pharm Bull 50(5):567–570

    Article  CAS  PubMed  Google Scholar 

  • Usui F, Maeda K, Kusai A, Ikeda M, Nishimura K, Yamamoto K (1998) Dissolution improvement of RS-8359 by the solid dispersion prepared by the solvent method. Int J Pharm 170(2):247–256

    Article  CAS  Google Scholar 

  • Van den Mooter G, Wuyts M, Blaton N, Busson R, Grobet P, Augustijns P, Kinget R (2001) Physical stabilisation of amorphous ketoconazole in solid dispersions with polyvinylpyrrolidone K25. Eur J Pharm Sci 12(3):261–269

    Article  PubMed  Google Scholar 

  • Van Eerdenbrugh B, Taylor LS (2010) Small scale screening to determine the ability of different polymers to inhibit drug crystallization upon rapid solvent evaporation. Mol Pharm 7(4):1328–1337

    Article  PubMed  CAS  Google Scholar 

  • Vasconcelos T, Sarmento B, Costa P (2007) Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov Today 12(23):1068–1075

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Hui H, Barnes TJ, Barnett C, Prestidge CA (2009) Oxidized mesoporous silicon microparticles for improved oral delivery of poorly soluble drugs. Mol Pharm 7(1):227–236

    Article  CAS  Google Scholar 

  • Willart JF, Descamps M (2008) Solid state amorphization of pharmaceuticals. Mol Pharm 5(6):905–920

    Article  CAS  PubMed  Google Scholar 

  • Wyttenbach N, Janas C, Siam M, Lauer ME, Jacob L, Scheubel E, Page S (2013) Miniaturized screening of polymers for amorphous drug stabilization (SPADS): rapid assessment of solid dispersion systems. Eur J Pharm Biopharm 84(3):583–598

    Article  CAS  PubMed  Google Scholar 

  • York P (1983) Solid-state properties of powders in the formulation and processing of solid dosage forms. Int J Pharm 14(1):1–28

    Article  CAS  Google Scholar 

  • Yoshinari T, Forbes RT, York P, Kawashima Y (2003) Crystallisation of amorphous mannitol is retarded using boric acid. Int J Pharm 258(1–2):109–120

    Article  CAS  PubMed  Google Scholar 

  • Yoshioka S, Aso Y (2007) Correlations between molecular mobility and chemical stability during storage of amorphous pharmaceuticals. J Pharm Sci 96(5):960–981

    Article  CAS  PubMed  Google Scholar 

  • Yoshioka M, Hancock BC, Zografi G (1994) Crystallization of indomethacin from the amorphous state below and above its glass transition temperature. J Pharm Sci 83(12):1700–1705

    Article  CAS  PubMed  Google Scholar 

  • Yu L (2001a) Amorphous pharmaceutical solids: preparation, characterization and stabilization. Adv Drug Deliv Rev 48(1):27–42

    Article  CAS  PubMed  Google Scholar 

  • Yu L (2001b) Amorphous pharmaceutical solids: preparation, characterization and stabilization. Adv Drug Deliv Rev 48(1):27–42

    Article  CAS  PubMed  Google Scholar 

  • Yu D-G, Shen X-X, Branford-White C, White K, Zhu L-M, Bligh SA (2009) Oral fast-dissolving drug delivery membranes prepared from electrospun polyvinylpyrrolidone ultrafine fibers. Nanotechnology 20(5):055104

    Article  PubMed  CAS  Google Scholar 

  • Yu D-G, Branford-White C, Shen X-X, Zhang X-F, Zhu L-M (2010a) Solid dispersions of ketoprofen in drug-loaded electrospun nanofibers. J Dispers Sci Technol 31(7):902–908

    Article  CAS  Google Scholar 

  • Yu D-G, Gao L-D, White K, Branford-White C, Lu W-Y, Zhu L-M (2010b) Multicomponent amorphous nanofibers electrospun from hot aqueous solutions of a poorly soluble drug. Pharm Res 27(11):2466–2477

    Article  CAS  PubMed  Google Scholar 

  • Yu D-G, Yang J-M, Branford-White C, Lu P, Zhang L, Zhu L-M (2010c) Third generation solid dispersions of ferulic acid in electrospun composite nanofibers. Int J Pharm 400(1):158–164

    Article  CAS  PubMed  Google Scholar 

  • Zhou D, Schmitt EA, Zhang GG, Law D, Vyazovkin S, Wight CA, Grant DJ (2003) Crystallization kinetics of amorphous nifedipine studied by model-fitting and model-free approaches. J Pharm Sci 92(9):1779–1792

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sai HS. Boddu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wei, Y., Dattachowdhury, B., Vangara, K., Patel, N., Alexander, K., Boddu, S. (2015). Excipients That Facilitate Amorphous Drug Stabilization. In: Narang, A., Boddu, S. (eds) Excipient Applications in Formulation Design and Drug Delivery. Springer, Cham. https://doi.org/10.1007/978-3-319-20206-8_15

Download citation

Publish with us

Policies and ethics