Skip to main content

Very High-Resolution Imaging of Post-Mortem Human Cardiac Tissue Using X-Ray Phase Contrast Tomography

  • Conference paper
  • First Online:
Functional Imaging and Modeling of the Heart (FIMH 2015)

Abstract

This paper investigates the 3D microscopic structure of ex-vivo human cardiac muscle. Usual 3D imaging techniques such as DMRI or CT do not achieve the required resolution to visualise cardio-myocytes, therefore we employ X-ray phase contrast micro-CT, developed at the European Synchrotron Radiation Facility (ESRF). Nine tissue samples from the left ventricle and septum were prepared and imaged at an isotropic resolution of 3.5 \(\upmu \)m, which is sufficient to visualise cardio-myocytes. The obtained volumes are compared with 2D histological examinations, which serve as a basis for interpreting the 3D X-ray phase-contrast results. Our experiments show that 3D X-ray phase-contrast micro-CT is a viable technique for investigating the 3D arrangement of myocytes ex-vivo at a microscopic level, allowing a better understanding of the 3D cardiac tissue architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baltes, C., Radzwill, N., Bosshard, S., Marek, D., Rudin, M.: Micro mri of the mouse brain using a novel 400 mhz cryogenic quadrature rf probe. NMR Biomed. 22(8), 834–842 (2009). http://dx.doi.org/10.1002/nbm.1396

    Article  Google Scholar 

  2. Castelli, E., Tonutti, M., Arfelli, F., Longo, R., Quaia, E., Rigon, L., Sanabor, D., Zanconati, F., Dreossi, D., Abrami, A., Quai, E., Bregant, P., Casarin, K., Chenda, V., Menk, R.H., Rokvic, T., Vascotto, A., Tromba, G., Cova, M.A.: Mammography with synchrotron radiation: first clinical experience with phase-detection technique. Radiology 259(3), 684–694 (2011)

    Article  Google Scholar 

  3. Cloetens, P., Pateyron, M., Buffière, J.Y., Peix, G., Baruchel, J., Peyrin, F., Schlenker, M.: Observation of microstructure and damage in materials by phase sensitive radiography and tomography. J. Appl. Phys. 81(9), 5878–5886 (1997)

    Article  Google Scholar 

  4. Cloetens, P., Ludwig, W., Baruchel, J., Guigay, J.P., Pernot-Rejmnkov, P., Salom-Pateyron, M., Schlenker, M., Buffire, J.Y., Maire, E., Peix, G.: Hard x-ray phase imaging using simple propagation of a coherent synchrotron radiation beam. J. Phys. D Appl. Phys. 32(10A), A145–A151 (1999)

    Article  Google Scholar 

  5. Cooper, D.M.L., Erickson, B., Peele, A., Hannah, K., Thomas, C.D.L., Clement, J.G.: Visualization of 3D osteon morphology by synchrotron radiation micro-CT. J. Anat. 219(4), 481–489 (2011)

    Article  Google Scholar 

  6. Dávila Serrano, E.E., Guigues, L., Roux, J.-P., Cervenansky, F., Camarasu-Pop, S., Riveros Reyes, J.G., Flórez-Valencia, L., Hernández Hoyos, M., Orkisz, M.: CreaTools: a framework to develop medical image processing software: application to simulate pipeline stent deployment in intracranial vessels with aneurysms. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds.) ICCVG 2012. LNCS, vol. 7594, pp. 55–62. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  7. Desrosiers, P.A., Michalowicz, G., Jouk, P.-S., Usson, Y., Zhu, Y.: Modeling of the optical behavior of myocardial fibers in polarized light imaging. In: Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds.) STACOM 2012. LNCS, vol. 7746, pp. 235–244. Springer, Heidelberg (2013)

    Google Scholar 

  8. Ferreira, P., Kilner, P., McGill, L.A., Nielles-Vallespin, S., Scott, A., Ho, S., McCarthy, K., Haba, M., Ismail, T., Gatehouse, P., de Silva, R., Lyon, A., Prasad, S., Firmin, D., Pennell, D.: In vivo cardiovascular magnetic resonance diffusion tensor imaging shows evidence of abnormal myocardial laminar orientations and mobility in hypertrophic cardiomyopathy. J. Cardiovasc. Magn. Reson. 16(1), 87 (2014)

    Article  Google Scholar 

  9. Jouk, P.S., Mourad, A., Milisic, V., Michalowicz, G., Raoult, A., Caillerie, D., Usson, Y.: Analysis of the fiber architecture of the heart by quantitative polarized light microscopy: accuracy, limitations and contribution to the study of the fibre architecture of the ventricles during fetal and neonatal life. Eur. J. Cardio-Thorac. Surg. 31(5), 915–921 (2007)

    Article  Google Scholar 

  10. Kidoguchi, K., Tamaki, M., Mizobe, T., Koyama, J., Kondoh, T., Kohmura, E., Sakurai, T., Yokono, K., Umetani, K.: In vivo x-ray angiography in the mouse brain using synchrotron radiation. Stroke 347, 1856–1861 (2006)

    Article  Google Scholar 

  11. Langer, M., Cloetens, P., Pacureanu, A., Peyrin, F.: X-ray in-line phase tomography of multimaterial objects. Opt. Lett. 37(11), 2151–2153 (2012)

    Article  Google Scholar 

  12. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)

    Article  MathSciNet  Google Scholar 

  13. Paganin, D., Mayo, S.C., Gureyev, T.E., Miller, P.R., Wilkins, S.W.: Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. J. Microsc. 206(1), 33–40 (2002)

    Article  MathSciNet  Google Scholar 

  14. Varray, F., Wang, L., Fanton, L., Zhu, Y.-M., Magnin, I.E.: High resolution extraction of local human cardiac fibre orientations. In: Ourselin, S., Rueckert, D., Smith, N. (eds.) FIMH 2013. LNCS, vol. 7945, pp. 150–157. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  15. Wang, L., Zhu, Y., Li, H., Liu, Y., Magnin, I.E.: Multiscale modeling and simulation of the cardiac fiber architecture for dmri. IEEE Trans. Biomed. Eng. 59(1), 16–19 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank F. Peyrin, C. Olivier, L. Wang and M. Ozon for technical support at ESRF Grenoble. This study was funded by the French National Research Agency (ANR) through the MOSIFAH project (Multimodal and multiscale modeling and simulation of the fibre architecture of the human heart, ANR-13-MONU-0009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Mirea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Mirea, I. et al. (2015). Very High-Resolution Imaging of Post-Mortem Human Cardiac Tissue Using X-Ray Phase Contrast Tomography. In: van Assen, H., Bovendeerd, P., Delhaas, T. (eds) Functional Imaging and Modeling of the Heart. FIMH 2015. Lecture Notes in Computer Science(), vol 9126. Springer, Cham. https://doi.org/10.1007/978-3-319-20309-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20309-6_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20308-9

  • Online ISBN: 978-3-319-20309-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics