Skip to main content

Relationship Between Cardiac Electrical and Mechanical Activation Markers by Coupling Bidomain and Deformation Models

  • Conference paper
  • First Online:
Functional Imaging and Modeling of the Heart (FIMH 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9126))

  • 1741 Accesses

Abstract

The aim of this study is to simulate the electromechanical behavior of a cardiac wedge following an endo- or epicardial stimulation, and to study different markers of mechanical contraction times. We investigate how tissue anisotropy affects the performance of the mechanical markers and we evaluate their delay distributions with respect to the electrical activation time. The main results of this study show that: the electrical and mechanical activation sequences are very well correlated; the electromechanical delay displays heterogeneous distributions even if the electrical and mechanical cellular properties are assumed homogeneous; the electromechanical delay is larger in the regions where depolarization proceeds along fiber than across fiber.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adeniran, I., Hancox, J.C., Zhang, H.: Effect of cardiac ventricular mechanical contraction on the characteristics of the ECG: a simulation study. J. Biomed. Sci. Eng. 6, 47–60 (2013)

    Article  Google Scholar 

  2. Ambrosi, D., et al.: Electromechanical coupling in cardiac dynamics: the active strain approach. SIAM J. Appl. Math. 71, 605–621 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ashikaga, H., et al.: Transmural dispersion of myofiber mechanics. J. Am. Coll. Cardiol. 49, 909–916 (2007)

    Article  Google Scholar 

  4. Augustijn, C.H., et al.: Mapping the sequence of contraction of the canine left ventricle. Pflug. Arch. 419, 529–533 (1991)

    Article  Google Scholar 

  5. Badke, F.R., Boinay, P., Covell, J.W.: Effects of ventricular pacing on regional left ventricular performance in the dog. Am. J. Physiol. 238, H858–H867 (1980)

    Google Scholar 

  6. Balay, S., et al.: PETSc users manual. Technical report, ANL-95/11 - Revision 3.3, Argonne National Laboratory (2012)

    Google Scholar 

  7. Bovendeerd, P.H.M., Kroon, W., Delhaas, T.: Determinants of left ventricular shear strain. Am. J. Physiol. HCP 297, H1058–H1068 (2009)

    Article  Google Scholar 

  8. Carapella, V., et al.: Quantitative study of the effect of tissue microstructure on contraction in a computational model of rat left ventricle. PLoS One 9, e92792 (2014)

    Article  Google Scholar 

  9. Colli Franzone, P., Pavarino, L.F., Scacchi, S.: Mathematical Cardiac Electrophysiology. MSA, vol. 13. Springer, New York (2014)

    MATH  Google Scholar 

  10. Colli Franzone, P., Pavarino, L.F., Scacchi, S.: Parallel multilevel solvers for the cardiac electro-mechanical coupling. Appl. Numer. Math. (To appear) (2014)

    Google Scholar 

  11. P. Colli Franzone, L. F. Pavarino, and S. Scacchi, A numerical simulation study of the influence of mechanical feedbacks on the bioelectrical activity in a cardiac electro-mechanical model, Math. Mod. Meth. Appl. Sci. (2015) (Submitted)

    Google Scholar 

  12. Constantino, J., Hu, Y., Trayanova, N.A.: A computational approach to understanding the cardiac electromechanical activation sequence in the normal and failing heart, with translation to the clinical practice of CRT. Progr. Biophys. Mol. Biol. 110, 372–379 (2012)

    Article  Google Scholar 

  13. de Oliveira, B.L., et al.: Effects of deformation on transmural dispersion of repolarization using in silico models of human left ventricular wedge. Int. J. Numer. Meth. Biomed. Eng. 29, 1323–1337 (2013)

    Article  Google Scholar 

  14. Eriksson, T.S.E., et al.: Influence of myocardial fiber/sheet orientations on left ventricular mechanical contraction. Math. Mech. Solids 18, 592–606 (2013)

    Article  MathSciNet  Google Scholar 

  15. Fritz, T., et al.: Simulation of the contraction of the ventricles in a human heart model including atria and pericardium. Biomech. Mod. Mechanobiol. 13(3), 627–641 (2014)

    Article  Google Scholar 

  16. Gurev, V., et al.: Distribution of electromechanical delay in the heart: insights from a three-dimensional electromechanical model. Biophys. J. 99, 745–754 (2010)

    Article  Google Scholar 

  17. Kerckhoffs, R.C.P., et al.: Homogeneity of cardiac contraction despite physiological asyncrony of depolarization: a model study. Ann. Biomed. Eng. 31, 536–547 (2003)

    Article  Google Scholar 

  18. Kerckhoffs, R.C.P., et al.: Timing of depolarization and contraction in the paced canine left ventricle: model and experiment. J. Cardiovasc. Electrophysiol. 14, S188–S195 (2003)

    Article  Google Scholar 

  19. Kerckhoffs, R.C.P., et al.: Intra- and interventricular asynchrony of electromechanics in the ventricularly paced heart. J. Eng. Math. 47, 201–216 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kerckhoffs, R.C.P., et al.: Electromechanics of paced left ventricle simulated by straightforward mathematical model: comparison with experiments. Am. J. Physiol. HCP 289, H1889–H1897 (2005)

    Article  Google Scholar 

  21. Land, S., et al.: An analysis of deformation-dependent electromechanical coupling in the mouse heart. J. Physiol. 590, 4553–4569 (2012)

    Article  Google Scholar 

  22. Niederer, S.A., Smith, N.P.: A mathematical model of the slow force response to stretch in rat ventricular myocites. Biophys. J. 92, 4030–4044 (2007)

    Article  Google Scholar 

  23. Pavarino, L.F., Scacchi, S.: Multilevel additive Schwarz preconditioners for the Bidomain reaction-diffusion system. SIAM J. Sci. Comput. 31, 420–443 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  24. Pluijmert, M., et al.: Effects of activation pattern and active stress development on myocardial shear in a model with adaptive myofiber reorientation. Am. J. Physiol. HCP 306, H538–H546 (2014)

    Article  Google Scholar 

  25. Prinzen, F.W., et al.: The time sequence of electrical and mechanical activation during spontaneous beating and ectopic stimulation. Eur. Heart. J. 13, 535–543 (1992)

    Google Scholar 

  26. Rossi, S., et al.: Thermodynamically consistent orthotropic activation model capturing ventricular systolic wall thickening in cardiac electromechanics. Eur. J. Mech. A-Solids 48, 129–142 (2014)

    Article  MathSciNet  Google Scholar 

  27. Sainte-Marie, J., et al.: Modeling and estimation of cardiac electromechanical activity. Comput. Struct. 84, 1743–1759 (2006)

    Article  MathSciNet  Google Scholar 

  28. ten Tusscher, K.H.W.J., et al.: A model for human ventricular tissue. Am. J. Phys. HCP 286, H1573–H1589 (2004)

    Google Scholar 

  29. Usyk, T.P., McCulloch, A.D.: Relationship between regional shortening and asynchronous electrical activation in a three-dimensional model of ventricular electromechanics. J. Cardiovasc. Electrophysiol. 14, S196–S202 (2003)

    Article  Google Scholar 

  30. Wall, S.T., et al.: Electromechanical feedback with reduced cellular connectivity alters electrical activity in an infarct injures left ventricle: a finite element model study. Am J. Physiol. HCP 302, H206–H214 (2012)

    Article  Google Scholar 

  31. Weise, L.D., Nash, M.P., Panfilov, A.V.: A discrete model to study reaction-diffusion-mechanics systems. PLos One 6(7), e21934 (2011)

    Article  Google Scholar 

  32. Wyman, B., et al.: Mapping propagation of mechanical activation in the paced heart with MRI tagging. Am. J. Physiol. HCP 45, H881–H891 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca F. Pavarino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Colli-Franzone, P., Pavarino, L.F., Scacchi, S. (2015). Relationship Between Cardiac Electrical and Mechanical Activation Markers by Coupling Bidomain and Deformation Models. In: van Assen, H., Bovendeerd, P., Delhaas, T. (eds) Functional Imaging and Modeling of the Heart. FIMH 2015. Lecture Notes in Computer Science(), vol 9126. Springer, Cham. https://doi.org/10.1007/978-3-319-20309-6_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20309-6_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20308-9

  • Online ISBN: 978-3-319-20309-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics