Skip to main content

Viscous Flow of Glass-Forming Liquids and Glasses

  • Conference paper
  • First Online:
Physics of Liquid Matter: Modern Problems

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 171))

Abstract

Continuous liquid-to-glass transition is characterized by dramatic changes of the liquid structure, thermodynamics and dynamics in a comparatively narrow temperature range. The viscous flow modes of the matter are changing within this temperature range too. The interplay of the structural, thermodynamic, mechanical and dynamic parameters at the viscous flow is still a challenge. Near the glass transition temperature the cooperative diffusion and sliding determine the shear viscosity of the liquid and glass as well as the fragility and the strain rate sensitivity of the flow. In this chapter the theoretical aspects of the physics of viscous flow of glass-forming liquids and glasses are considered within the framework of the heterophase fluctuations model (HPFM), providing a mesoscopic description of the heterophase liquid states. Newtonian and non-Newtonian, Arrhenius and non-Arrhenius flow modes are considered as well as the crossover from the flow to inhomogeneous deformation of glass. The fragility, the strain rate sensitivity, and the fragile-to-strong liquid transformation are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Mesoscopically equilibrated glasses have non-zero residual configurational entropy at \(T \to 0\) [12].

  2. 2.

    In Argon’s model of homogeneous creep of metallic glasses the activation volume is taken \({ \approx }30a^{3}\) [28].

  3. 3.

    Cooperative structural fluctuations of such type were introduced by Argon [28]. Later they were termed “shear transformation zones” STZs [53].

  4. 4.

    Comprehensive overviews of the inhomogeneous deformation and shear banding of metallic glasses are presented in [6, 56]. The scenario with two consecutive stages of the shear band formation is considered in [56] and the references quoted.

Abbreviations

AG:

Adam-Gibbs

CD:

correlated domains

CRD:

cooperatively rearranging domain

DVF:

diffusion-viscous flow

HPF:

heterophase fluctuations

HPFM:

heterophase fluctuations model

SRO:

short-range order

SRS:

strain rate sensitivity

STZ:

shear transformation zone

VFT:

Vogel-Fulcher-Tamman

WAXS:

wide-angle X-ray scattering

References

  1. H. Sillescu, J. Non-Cryst. Solids 243, 81 (1999)

    Article  ADS  Google Scholar 

  2. R. Richert, J. Phys. Chem. B 101, 6233 (1997)

    Article  Google Scholar 

  3. R. Richert, J. Non-Cryst. Solids 235–237, 41 (1998)

    Article  Google Scholar 

  4. A.S. Bakai, Polycluster amorphous solids (Energoatomizdat, Moscow, 1987). (In Russian)

    Google Scholar 

  5. E.W. Fischer, Phys. A 201, 183 (1993)

    Article  Google Scholar 

  6. J. Lu, G. Ravichandran, W.L. Johnson, Acta Mat. 51, 3429 (2003)

    Article  Google Scholar 

  7. C.A. Schuh, T.C. Hufnagel, U. Ramamurty, Acta Mater. 55, 4067 (2007)

    Article  Google Scholar 

  8. A.S. Bakai, in Glassy Metals III, Topics in Applied Physics, vol. 72. Ed. by H. Beck, H.-J. Guentherodt (Springer, Heidelberg, 1994), p. 209

    Google Scholar 

  9. A.S. Bakai, Low Temp. Phys. 24, 3 (1998)

    Article  ADS  Google Scholar 

  10. E.W. Fischer, A.S. Bakai, slow dynamics in complex systems, in AIP Conference Proceedings, vol. 469. ed. by M. Tokuyama, I. Oppenheim (1999), p. 325

    Google Scholar 

  11. A.S. Bakai, E.W. Fischer, J. Chem. Phys. 120, 5235–5252 (2004)

    Article  ADS  Google Scholar 

  12. A.S. Bakai, J. Chem. Phys. 125, 064503 (2006)

    Article  ADS  Google Scholar 

  13. A.S. Bakai, Cond. Mat. Phys. 17(43701), 1–24 (2014)

    ADS  Google Scholar 

  14. G.G. Stokes, Trans. Cambridge Philos. Soc. 8 (1845)

    Google Scholar 

  15. A. Einstein, Inaugural Dissertation (Zuerich Universitaet, 1905)

    Google Scholar 

  16. A. Einstein, Ann. Phys. 19, 289 (1906)

    Article  MATH  Google Scholar 

  17. M.S. Smoluchowski, Proc. Math. 5-th Int. Congress Math. 2, 192, (1912)

    Google Scholar 

  18. R. Bohmer, C.A. Angell, Phys. Rev. B 45, 10091 (1992)

    Article  ADS  Google Scholar 

  19. C.A. Angell, Science 267, 1924 (1995)

    Article  ADS  Google Scholar 

  20. A.P. Sokolov, Endeavour 21, 109 (1997)

    Article  Google Scholar 

  21. G. Adam, J.H. Gibbs, J. Chem. Phys. 43, 139 (1965)

    Article  ADS  Google Scholar 

  22. W. Kauzmann, Chem. Rev. 43, 219 (1948)

    Article  Google Scholar 

  23. H. Vogel, Phys. Z. 22, 645 (1921)

    Google Scholar 

  24. G.S. Fulcher, J. Am. Ceram. Soc. 8, 329 (1925)

    Article  Google Scholar 

  25. G. Tamman, W.Z. Hesse, Anorg. Allgem. Chem. 156, 245 (1926)

    Article  Google Scholar 

  26. A.L. Greer, K.F. Kelton, S. Sastry (eds.), Fragility of Glass-Forming Liquids, TRiPS series (Hindustan Book Agency, 2014)

    Google Scholar 

  27. S.F. Stickel, E.W. Fischer, R. Richert, J. Chem. Phys. 102, 6251 (1995)

    Article  ADS  Google Scholar 

  28. F. Stickel, E.W. Fischer, R. Richert, J. Chem. Phys. 104, 2043 (1996)

    Article  ADS  Google Scholar 

  29. F. Stickel, in PhD thesis D77 Mainz University (Verlag Shaker Aachen, 1995)

    Google Scholar 

  30. J.C. Maxwell, Phi l. Trans. Royal Soc. 157, 49 (1867)

    Article  Google Scholar 

  31. L.D. Landau, E.M. Lifshits, Statistical Physics (Elsevier, 1980)

    Google Scholar 

  32. R. Ubbelohde, Melting and Crystal Structures (Clarendon Press, 1965)

    Google Scholar 

  33. A.S. Bakai, Materialovedenie 6, 2 (2009)

    Google Scholar 

  34. A.S. Bakai, V.V. Kul’ko, I.M. Mikhailovskij, V.B. Rabukhin, O.A.J. Velikodnaya, Non-Crystal. Solids 182, 315 (1995)

    Article  ADS  Google Scholar 

  35. A.S. Bakai, I.M. Mikhailovskij, T.I. Mazilova, N. Wanderka, Low Temp. Phys. 28 (2002)

    Google Scholar 

  36. F. Vurpillot et al., Surf. Interface Anal. 39, 273 (2007)

    Article  Google Scholar 

  37. A.S. Bakai, E.V. Sadanov, V.A. Ksenofontov, S.A. Bakai, J.A. Gordienko, I.M. Mikhailovskij, Metals 2, 441 (2012)

    Article  Google Scholar 

  38. A.S. Bakai, Polycluster amorphous structures and their properties, in Prep. KIPT 84–33, TsNIIatominform (1984) (in Russian)

    Google Scholar 

  39. F.H. Stillinger, J. Chem. Phys. 89, 6461 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  40. M. Oguni, J. Non-Cryst. Solids 210, 171 (1997)

    Article  ADS  Google Scholar 

  41. I. Chang, H. Sillescu, J. Phys. Chem. B 101, 8794 (1997)

    Article  Google Scholar 

  42. P.G. de Gennes, Compt. Rend. Phys. 3, 1263 (2002)

    Article  ADS  Google Scholar 

  43. R. Hall, P.G. Wolynes, J. Chem. Phys. 86, 2943 (1987)

    Article  ADS  Google Scholar 

  44. G. Wolynes, Phys. Rev. A 40, 1045 (1989)

    Article  ADS  Google Scholar 

  45. E.W. Fischer, A. Bakai, A. Patkowski, W. Steffen, L. Reinhardt, J. Non-Cryst. Solids 307–310, 584 (2002)

    Article  Google Scholar 

  46. E. Roessler, Phys. Rev. Lett. 65, 1595 (1990)

    Article  ADS  Google Scholar 

  47. J.A. Hodgdon, F.H. Stillinger, Phys. Rev. E 48, 207 (1994)

    Article  ADS  Google Scholar 

  48. G. Tarjus, D. Kivelson, J. Chem. Phys. 103, 3071 (1995)

    Article  ADS  Google Scholar 

  49. E.W. Fischer, Private Communication (1999)

    Google Scholar 

  50. A.P. Sokolov, A. Kisliuk, D. Quitmann, A. Kudlik, E. Roessler, J. Non-Cryst. Solids 172–174, 138 (1994)

    Article  Google Scholar 

  51. F. Nabarro, Report of the conference on the strength of solids. Phys. Soc. Lond. (1948)

    Google Scholar 

  52. C. Herring, J. Appl. Phys. 21, 437 (1950)

    Article  ADS  Google Scholar 

  53. R. Coble, J. Appl. Phys. 34, 1679 (1963)

    Article  ADS  Google Scholar 

  54. I.M. Lifshitz, Sov. Phys.-JETP 17, 909 (1963)

    Google Scholar 

  55. N.P. Lazarev, A.S. Bakai, J. Mech. Behav. Mater. 22(3–4), 119 (2013)

    Google Scholar 

  56. S.X. Song, T.G. Nieh, Intermetalics 17, 762 (2009)

    Article  Google Scholar 

  57. A.L. Greer, Y.Q. Cheng, E. Ma, Mat. Sci. Eng. 74, 71 (2013)

    Article  Google Scholar 

  58. A.V. Granato, U. Huesen, H. Kopf, Appl. Phys. Lett. 97, 171911-3 (2010)

    Article  ADS  Google Scholar 

  59. J. Frenkel, Zeitschrift fűr Physik 37, 572 (1926)

    Article  ADS  MATH  Google Scholar 

  60. I.M. Lifshits, V.B. Shikin, Sov. Phys. Solid State 6, 2211 (1965)

    MathSciNet  Google Scholar 

  61. F. Faupel, W. Frank, M.-P. Macht, V. Naundorf, K. Raetzke, H.R. Schober, S.K. Sharma, Rev. Mod. Phys. 75, 237 (2003)

    Article  ADS  Google Scholar 

  62. H.B. Yu, W.H. Wang, K. Samwer, Mater. Today 16, 183 (2013)

    Article  Google Scholar 

  63. Y. Kawamura, T. Nakamura, A. Inoue, T. Masumoto, Mater. Trans. JIM 40, 794 (1999)

    Article  Google Scholar 

  64. M. Heilmaier, J. Eckert, Adv. Eng. Mater. 7, 833 (2005)

    Article  Google Scholar 

  65. F.H. Dalla Torre, D. Klaumuenzer, R. Maaß, J.F. Loeffler, Acta Mater. 58, 3742 (2010)

    Article  Google Scholar 

  66. Chris Way, P. Wadhwa, R. Busch, Acta Mater. 55, 1977 (2007)

    Article  Google Scholar 

  67. Z. Evenson, T. Schmitt, M. Nicola, I. Gallino, R. Busch, Acta Mater. 60, 4712 (2012)

    Article  Google Scholar 

  68. S. Wei, F. Yang, J. Bednarcik, I. Kaban, A. Meyer, R. Busch, Nat. Commun. 4, 2083 (2013)

    ADS  Google Scholar 

  69. C.Z. Zhang, L.N. Hu, Y.Z. Yue, J.C. Mauro, J. Chem. Phys. 113, 014508 (2010)

    Article  ADS  Google Scholar 

  70. L. Hu, C. Zhou, C. Zhang, Y. Yue, J. Chem. Phys. 138, 174598 (2013)

    Google Scholar 

  71. J.D. Van der Waals, in Ph. D. Thesis, University of Leiden (1873)

    Google Scholar 

  72. V.I. Yukalov, Phys. Rep. 208, 395 (1991)

    Article  ADS  Google Scholar 

  73. P.B. Macedo, W. Capps, T.A. Litovitz, J. Chem. Phys. 44, 3357 (1966)

    Article  ADS  Google Scholar 

  74. E. Rapoport, J. Chem. Phys. 46, 2891 (1967)

    Article  ADS  Google Scholar 

  75. C.A. Angell, K.I. Rao, J. Chem. Phys. 57, 470 (1972)

    Article  ADS  Google Scholar 

  76. M.H. Cohen, G.S. Grest, Phus. Rev. B20, 1077 (1979)

    Article  ADS  Google Scholar 

  77. M.H. Cohen, G.S. Grest, ibid 26, 6313 (1982)

    ADS  Google Scholar 

  78. V.I. Yukalov, Phys. Rev. B 32, 436 (1985)

    Article  ADS  Google Scholar 

  79. E.G. Ponyatovsky, O.I. Barkalov, Mat. Sci. Rep. 8, 147 (1992)

    Article  Google Scholar 

  80. J.T. Bendler, M.F. Shlessinger, J. Stat. Phys. 53, 531 (1988)

    Article  ADS  Google Scholar 

  81. J.T. Bendler, M.F. Shlessinger, J. Chem. Phys. 96, 3970 (1992)

    Article  Google Scholar 

  82. D. Kivelson, S.A. Kivelson, X. Zhao, Z. Nussinov, G. Tarjus, Phys. A 219, 27 (1995)

    Article  Google Scholar 

  83. H. Tanaka, J. Chem. Phys 111, 3163–3175 (1999)

    Article  ADS  Google Scholar 

  84. H. Tanaka, Phys. Rev. E 62, 6968 (2000)

    Article  ADS  Google Scholar 

  85. V.I. Yukalov, Int. J. Mod. Phys. B 17, 2333 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  86. J. Gilman, J. Appl. Phys. 46, 1625 (1975)

    Article  ADS  Google Scholar 

  87. P.D. Olmsted, Rheol. Acta 47, 283 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

I express my thanks to Dr. N.P. Lazarev for valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olexandr Bakai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Bakai, O. (2015). Viscous Flow of Glass-Forming Liquids and Glasses. In: Bulavin, L., Lebovka, N. (eds) Physics of Liquid Matter: Modern Problems. Springer Proceedings in Physics, vol 171. Springer, Cham. https://doi.org/10.1007/978-3-319-20875-6_5

Download citation

Publish with us

Policies and ethics