Skip to main content

Part of the book series: Particle Technology Series ((POTS,volume 25))

  • 2665 Accesses

Abstract

Size reduction is an integral part of mineral processing which has the largest contribution to the energy consumption of mineral processing plants. This chapter provides an overview of size reduction theories and describes different mechanisms of breakage which are relevant in the mineral processing context, along with ore characterisation tests which measure the response of ore to different mechanisms of breakage. The most common comminution machines found in mineral processing are briefly described with explanations of how such equipment are typically laid out in comminution circuits. Concepts of novel approaches to designing flexible circuits are presented followed by process operation control strategies. Fine grinding, becoming an integral part of many mineral processing circuits, is also covered in this chapter along with appropriate placements for applications of fine grinding machines and important operating parameters. This chapter covers aspects of comminution which are relevant to mineral processing only and does not extends to other areas such as food, chemical, pharmaceutical, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ballantyne, G.R., Powell, M.S.: Benchmarking comminution energy consumption for the processing of copper and gold ores. Miner. Eng. 65, 109–114 (2014)

    Article  Google Scholar 

  2. Banini, G.A.: An Integrated Description of Rock Breakage in Comminution Machines [Online]. The University of Queensland, St Lucia (2000)

    Google Scholar 

  3. Belidor, B.F.: Nouveau cours de mathématique à l’usage d’Artillerie et du Génie. Chez Charles-Antonie Jombert, Paris (1725)

    Google Scholar 

  4. Bond, F.C.: The third theory of comminution. Trans. AIME 193, 484–494 (1952)

    Google Scholar 

  5. Bond, F.C.: Crushing and grinding calculations, part I. Br. Chem. Eng. 6, 378–385 (1961)

    Google Scholar 

  6. Bond, F.C.: Crushing and grinding calculations, part II. Br. Chem. Eng. 6, 543–548 (1961)

    Google Scholar 

  7. Bourgeois, F.S., Banini, G.A.: A portable load cell for in-situ ore impact breakage testing. Int. J. Miner. Process. 74S(65), 31–54 (2002)

    Article  Google Scholar 

  8. Brown, G.J., Miles, N.J.: Applied fractal geometry in impact pulverisation. The XIX International Mineral Processing Congress. San Francisco (1995)

    Google Scholar 

  9. Burford, B.D., Clark, L.W.: IsaMillâ„¢ technology used in efficient grinding circuits. VIII International Conference on Non-Ferrous Ore Processing. Poland (2007)

    Google Scholar 

  10. Curry, J.A., Ismay, M.J.L., Jameson, G.J.: Mine operating costs and the potential impacts of energy and grinding. Min. Eng. 56, 70–80 (2014)

    Article  Google Scholar 

  11. Davey, G.: Fine grinding applicants using the Metso VertiMill grinding mill and the Metso Stirred Media Detritor (SMD) in gold processing. 38th Annual Meeting of the Canadian Mineral Processors Ottawa, Canada (2006)

    Google Scholar 

  12. DOE: Comminution and Energy Consumption: Report of the Committee on Comminution and Energy Consumption. National Materials Advisory Board, Commission on Sociotechnical Systems, National Research Council, Washington, DC (1981)

    Google Scholar 

  13. DOE: Mining industry of the future: energy and environmental profile of the U.S. mining industry. In: U.S. Department of Energy & Office of Energy Efficiency and Renewable Energy (eds.). BCS, Incorporated. U.S. Energy Information Administration (EIA), Washington DC (2002)

    Google Scholar 

  14. DOE: Mineral industry energy bandwidth study. U.S. Department of Energy – Industrial Technologies Program (2007)

    Google Scholar 

  15. Dorai, S.V.: Energy Analysis of Gold Mining Plants: Case Studies and Technology Analysis – An Australian Case Scenario (MSc). Masters of Science (Industrial Ecology), Chalmers University of Technology, Sweden (2006)

    Google Scholar 

  16. Dundar, H., Benzar, H., Aydogan, N.: Application of population balance model to HPGR crushing. Min. Eng. 50–51, 114–120 (2013)

    Article  Google Scholar 

  17. Evertsson, C.M., Bearman, R.A.: Investigation of interparticle breakage as applied to cone crusher. Min. Eng. 10, 199–214 (1997)

    Article  Google Scholar 

  18. Fischer-Cripps, A.C.: Introduction to Contact Mechanics, 2nd edn. Springer, New South Wales (2007)

    Book  MATH  Google Scholar 

  19. Foggiatto, B., Hilden, M.M., Powell, M.S.: Advances in the simulation of Flexible circuits. 12th Mill Operators’ Conference. AusIMM, Townsville (2014)

    Google Scholar 

  20. Gilvarry, J.J., Bergstrom, B.H.: Fracture of brittle solids, II. Distribution function for fragment size in single fracture experimental. J. Appl. Phys. 32, 400–410 (1961)

    Article  MathSciNet  ADS  Google Scholar 

  21. Griffith, A.A.: The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. Lond. A 221, 163–198 (1921)

    Article  ADS  Google Scholar 

  22. Hukki, R.T.: Proposal for a solomonic settlement between the theories of von Rittinger, Kick and Bond. Trans. AIME 223, 403–408 (1962)

    Google Scholar 

  23. Kick, F.: Das Gesetz des proportionalen Widerstands und seine Anwendug. In: Leipzig, F. (ed.), Leipzig, Germany (1885)

    Google Scholar 

  24. King, R.P.: Modeling and Simulation of Mineral Processing Systems. Butterworth-Heinemann publications, Boston (2001)

    Google Scholar 

  25. La Nauze, R.D., Temos, J.: Technologies for sustainable operations. Council for Mining and Metallurgical Institutions Congress. Cairns, (2002)

    Google Scholar 

  26. Lynch, A.J.: Mineral Crushing and Grinding Circuits – Their Simulation, Optimisation, Design and Control. Elsevier Scientific Publishing Company, New York (1977)

    Google Scholar 

  27. Lynch, A.J., Rowland, C.A.: The History of Grinding. Society for Mining, Metallurgy and Exploration, Inc. (SME), Littleton (2005)

    Google Scholar 

  28. Man, Y.T.: A Model-Based Scale-Up Procedure for Wet, Overflow Ball Mills. Ph.D., The University of Queensland, Australia (1999)

    Google Scholar 

  29. Marktscheffel, M., Schönert, K.: Liberation of composite particles by single particle compression, shear and impact loading. 6th European Symposium Comminution. Nürnberg (1986)

    Google Scholar 

  30. Marsden, J.O.: Energy efficiency and copper hydrometallurgy. 6th International Symposium of Hydrometallurgy. Society for Mining, Metallurgy and Exploration (2008)

    Google Scholar 

  31. Mcsaveney, M.J., Davies, T.R.: Surface energy is not one of the energy losses in rock comminution. Eng. Geol. 109, 109–113 (2009)

    Article  Google Scholar 

  32. Morrell, A., Antony, S., Kohlhagen, G., Pommier, Y., Cushman, M.: Synthesis of benz[d]indeno[1,2-b]pyran-5,11-diones: versatile intermediates for the design and synthesis of topoisomerase I inhibitors. Bioorg. Med. Chem. Lett. 16, 1846–1849 (2006)

    Article  Google Scholar 

  33. Morrell, S.: An alternative energy-size relationship to that proposed by Bond for the design and optimisation of grinding circuits. Int. J. Miner. Process. 74, 133–141 (2004)

    Article  Google Scholar 

  34. Morrell, S.: Design of AG/SAG mill circuits using the SMC test. International Autogenous and Semi-Autogenous Grinding Technology. Vancouver, Canada (2006a)

    Google Scholar 

  35. Morrell, S.: Rock characterisation for high pressure grinding rolls circuit design. International Autogenous and SemiAutogenous Grinding Technology Vancouver, Canada (2006b)

    Google Scholar 

  36. Morrell, S.: A method for predicting the specific energy requirement of comminution circuits and assessing their energy utilisation efficiency. Min. Eng. 21, 224–233 (2008)

    Article  Google Scholar 

  37. Morrell, S.: Predicting the overall specific energy requirement of crushing, high pressure grinding roll and tumbling mill circuits. Min. Eng. 22, 544–549 (2009)

    Article  Google Scholar 

  38. Morrell, S.: Mapping orebody hardness variability for AG/SAG/crushing and HPGR circuit. International Autogenous and Semi-Autogenous Grinding Technology. Vancouver, Canada (2011)

    Google Scholar 

  39. Napier-Munn, T.: Is progress in energy-efficient comminution doomed? Comminution’14, 2014 Capetown, South Africa

    Google Scholar 

  40. Napier-Munn, T.J., Morrell, S., Morrison, R.D., Kojovic, T.: Mineral Comminution Circuits: Their Operation and Optimisation. Julius Kruttschnitt Mineral Research Centre, Indooroopilly (1996)

    Google Scholar 

  41. Napier-Munn, T.J., Morrell, S., Morrison, R.D., Kojovic, T.: Mineral Comminution Circuits – Their Operation and Optimisation. Julius Kruttschnitt Mineral Research Centre, Brisbane (2005)

    Google Scholar 

  42. Narayanan, S.S.: Development of a Laboratory Single Particle Breakage Technique and Its Application to Ball Mill Scale-Up. Ph.D., The University of Queensland, Australia (1985)

    Google Scholar 

  43. Narayanan, S.S., Whiten, W.J.: Determination of comminution characteristics from single particle breakage tests and its application to ball mill scale-up. Trans. Inst. Min. Metall. Sect. C: Min. Process. Extraction Metall. 97, C115–C124 (1988)

    Google Scholar 

  44. Northparkes: Energy savings action plan: Northparkes mine. In: Bond, K., PTY Ltd (eds.), Australia (2006)

    Google Scholar 

  45. Oxford Dictionary: Oxford Dictionary of English. In: Stevenson, A. (ed.) Oxford Dictionary of English, 3rd edn. Oxford University Press. China Translation & Printing Services Ltd, China (2010)

    Google Scholar 

  46. Palaniandy, S., Powell, M., Hilden, M., Allen, J., Kermanshahi, K.: VertiMill® – Preparing the feed within floatable regime at lower specific energy. Comminution 14. Cape Town, South Africa (2014)

    Google Scholar 

  47. Palaniandy, S., Powell, M., Hilden, M., Kermanshahi, K., Allen, J., Mwansa, S.: VertiMill® – Development of circuit survey and performance evaluation protocols. Metplant 2013. Perth, Australia (2013)

    Google Scholar 

  48. Powell, M.S., Bye, A.R.: Beyond mine-to-mill – circuit design for energy efficient resource utilisation. Tenth Mill Operators’ Conference. AusIMM, Adelaide (2009)

    Google Scholar 

  49. Rittinger, P.R.: Lehrbuch der Aufbereitungskunde. Ernst and Korn, Berlin (1867)

    Google Scholar 

  50. Rumpf, H.: Physical aspects of comminution and a new formulation of a law of comminution. Powder Technol. 7, 145–159 (1973)

    Article  Google Scholar 

  51. Sarabakos, G.D., Kosaropoulos, A.E.: Handbook of Food Processing Equipment. Kluwer Academic/Plenum Publishing, New York (2002)

    Google Scholar 

  52. Schilde, C., Burmeister, C.F., Kwade, A.: Measurement and simulation of micromechanical properties of nanostructured aggregates via nanoindentation and DEM-simulation. Powder Technol. 259, 1–13 (2014)

    Article  Google Scholar 

  53. Schönert, K.: Role of fracture physics in understanding comminution phenomena. Trans. Soc. Min. Eng. AIME 252, 21–26 (1972)

    Google Scholar 

  54. Schubert, H.: On the microprocesses of comminution. Aufbereitungstechnik Tech. 5, 237–246 (1987)

    Google Scholar 

  55. Shi, F.: Comparison of grinding media—Cylpebs versus balls. Min. Eng. 17, 1259–1268 (2004)

    Article  Google Scholar 

  56. Shi, F.: Coal breakage characterisation part 2: multi-component modelling. Fuel 117, 1156–1162 (2014)

    Article  Google Scholar 

  57. Shi, F., Kojovic, T.: Validation of a model for impact breakage incorporating particle size effect. Int. J. Miner. Process. 82, 156–163 (2007)

    Article  Google Scholar 

  58. Shi, F., Kojovic, T.: Comparison of impact breakage characterisation methods between the JK Rotary Breakage Tester and drop weight tester. International Autogenous and SemiAutogenous Grinding Technology Vancouver, Canada (2011)

    Google Scholar 

  59. Shi, F., Kojovic, T., Larbi-Bram, S., Manlapig, E.: Development of a rapid particle breakage characterization device-the JKRBT. Min. Eng. 22, 602–612 (2009)

    Article  Google Scholar 

  60. Shi, F., Xie, W.: A specific energy-based size reduction model for batch grinding ball mill. Mineral. Eng. 70, 130–140 (2014)

    Google Scholar 

  61. Shi, F., Zuo, W.: Coal breakage characterisation part 1: breakage testing with the JKFBC. Fuel 117, 1148–1155 (2014)

    Article  Google Scholar 

  62. Sloan, R., Parker, S., Craven, J., Schaffer, M.: Expert systems on SAG circuits: Three comparative case studies. International Autogenous and SemiAutogenous Grinding Technology Vancouver, Canada (2001)

    Google Scholar 

  63. SMC WEBSITE: About the SMC test [Online]. http://www.smctesting.com/about (2015). Accessed 2 Feb 2015

  64. Stamboliadis, E.T.: The energy distribution theory of comminution specific surface energy, mill efficiency and distribution mode. Min. Eng. 20, 140–145 (2007)

    Article  Google Scholar 

  65. Starkey, J., Dobby, G., Kosick, G.: A new tool for hardness testing. 26th Annual Meeting of the Canadian Mineral Processors Ottawa Canada (1994)

    Google Scholar 

  66. Tavares, L.M.: Breakage of single particles: quasi-static. In: Salman, A.D., Hounslow, M.J., Ghadiri, M. (eds.): Handbook of Powder Technology. Elsevier B.V., Oxford (2007)

    Google Scholar 

  67. Tavares, L.M., King, R.P.: Single-particle fracture under impact loading. Int. J. Miner. Process. 54, 1–28 (1998)

    Article  Google Scholar 

  68. Van Der Meer, F.P., Gruendken, A.: Flowsheet considerations for optimal use of high pressure grinding rolls. Min. Eng. 23, 663–669 (2010)

    Article  Google Scholar 

  69. Vogel, L., Peukert, W.: Determination of material properties relevant to grinding by practicable labscale milling tests. Int. J. Miner. Process. 74S, 329–338 (2004)

    Article  Google Scholar 

  70. Walker, W.H.: Principles of Chemical Engineering. McGraw-Hill, New York (1937)

    Google Scholar 

  71. Wang, Y., Forssberg, E.: Enhancement of energy efficiency for mechanical production of fine and ultra-fine particles in comminution. China Particuology 5, 193–201 (2007)

    Article  Google Scholar 

  72. Weibull, W.: A statistical distribution function of wide applicability. J. Appl. Mech. 9, 293–297 (1951)

    Google Scholar 

  73. Weichert, R.: Correlation between probability of breakage and fragment size distribution of mineral particles. Int. J. Miner. Process. 22, 1–8 (1988)

    Article  Google Scholar 

  74. Weichert, R., Herbst, J.A.: An ultrafast load cell device for measuring particle breakage. 1st World Congress of Particle Technology. Nürnberg (1986)

    Google Scholar 

  75. Wills, B.A., Napier-Munn, T.J.: Will’s Mineral Processing Technology. Elsevier Science & Technology Books, London (2006)

    Google Scholar 

  76. Yahyaei, M., Weerasekara, N.S., Powell, M.S.: Characterisation of superficial breakage using multi-size pilot mills. Min. Eng. 81, 71–78 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Yahyaei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yahyaei, M., Hilden, M., Shi, F., Liu, L.X., Ballantyne, G., Palaniandy, S. (2016). Comminution. In: Merkus, H., Meesters, G. (eds) Production, Handling and Characterization of Particulate Materials. Particle Technology Series, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-319-20949-4_6

Download citation

Publish with us

Policies and ethics