Skip to main content

New Ultrasound Technologies for Quantitative Assessment of Left Ventricular Function

  • Chapter
Stress Echocardiography

Abstract

Stress echocardiography is an established and mainstream method for the diagnosis and risk stratification of patients with known or suspected coronary artery disease [1, 2]. While the overall accuracy of stress echocardiography techniques is high, these methods are inherently limited by the subjective, eyeballing nature of image interpretation [3] and the learning curve [4] with relatively wide interinstitutional variability [5], unless conservative reading criteria are developed a priori through consensus [6]. In addition, the diagnosis is based on visual assessment of systolic thickening and endocardial motion, estimating radial function, which is theoretically less sensitive to ischemia than longitudinal and circumferential function [7]. Electrical activation disturbances (such as left bundle branch block or right ventricular pacing), hemodynamic conditions (such as right ventricular overload), or extracardiac factors (such as cardiac surgery or constrictive physiology) may affect wall motion independently of ischemia, making the analysis dependent on evaluation of systolic thickening alone [8]. Tachycardia and an increase in blood pressure may mimic ischemia, inducing a reduction of wall motion and thickening [9] – this is usually global but may be regional. Conversely, ventricular unloading (e.g., caused by mitral insufficiency) may mask ischemic wall motion abnormalities because of hyperkinesis and low wall stress [10]. Our current approach to subjective wall scoring is to evaluate contraction on a transmural basis, without the ability to assess subendocardial function, which is more sensitive to ischemia than the subepicardial layer [8]. Furthermore, the current application of stress echocardiography is certainly “intelligent” (full of useful clinical information), but the results cannot be easily reduced to a “beautiful” graphical display, understandable at a glance also by a non-imaging specialist. The development of an objective, quantitative method for wall motion analysis during stress testing would overcome these limitations, translating the inducible wall motion abnormality from an opinion into a number (Table 23.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Montalescot G, Sechtem U, Achenbach S et al; Task Force on the Management of Stable Angina Pectoris of the European Society of Cardiology, ESC Committee for Practice Guidelines (CPG) (2013) Guidelines on the management of stable angina pectoris: executive summary: the Task Force on the Management of Stable Angina Pectoris of the European Society of Cardiology. Eur Heart J 27:1341–1381

    Google Scholar 

  2. Wolk MJ, Bailey SR, Doherty JU et al; American College of Cardiology Foundation Appropriate Use Criteria Task Force (2014) ACCF/AHA/ASE/ASNC/HFSA/HRS/SCAI/SCCT/SCMR/STS 2013 multimodality appropriate use criteria for the detection and risk assessment of stable ischemic heart disease: a report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, American Heart Association, American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, and Society of Thoracic Surgeons. J Am Coll Cardiol 63:380–406

    Google Scholar 

  3. Picano E (1992) Stress echocardiography. From pathophysiological toy to diagnostic tool. Point of view. Circulation 85:1604–1612

    Article  CAS  PubMed  Google Scholar 

  4. Picano E, Lattanzi F, Orlandini A et al (1991) Stress echocardiography and the human factor: the importance of being expert. J Am Coll Cardiol 17:666–669

    Article  CAS  PubMed  Google Scholar 

  5. Hoffmann R, Lethen H, Picano E et al (1996) Analysis of interinstitutional observer agreement in interpretation of dobutamine stress echocardiograms. J Am Coll Cardiol 27:330–336

    Article  CAS  PubMed  Google Scholar 

  6. Varga A, Picano E, Pratali L et al (1999) Madness and method in stress echo reading. Eur Heart J 20:1271–1275

    Article  CAS  PubMed  Google Scholar 

  7. Henein M, Gibson D (2002) Dobutamine stress echocardiography: the long and short of it. Eur Heart J 23:520–522

    Article  CAS  PubMed  Google Scholar 

  8. De Castro S, Pandian NG (eds) (2000) Manual of clinical echocardiography. Time-Science International Medical, Grifton

    Google Scholar 

  9. Hirshleifer J, Crawford M, O’Rourke RA et al (1975) Influence of acute alterations in heart rate and systemic arterial pressure on echocardiographic measures of left ventricular performance in normal human subjects. Circulation 52:835–841

    Article  CAS  PubMed  Google Scholar 

  10. Mann DL, Gillam LD, Weyman AE (1986) Cross-sectional echocardiographic assessment of regional left ventricular performance and myocardial perfusion. Prog Cardiovasc Dis 29:1–52

    Article  CAS  PubMed  Google Scholar 

  11. Mor-Avi V, Lang RM, Badano LP et al (2011) Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography. Eur J Echocardiogr 12:167–205

    Article  PubMed  Google Scholar 

  12. Pandian NG, Skorton DJ, Collins SM et al (1983) Heterogeneity of left ventricular segmental wall thickening and excursion in 2-dimensional echocardiograms of normal human subjects. Am J Cardiol 51:1667–1673

    Article  CAS  PubMed  Google Scholar 

  13. Falsetti HL, Marcus ML, Kerber RE et al (1981) Quantification of myocardial ischemia and infarction by left ventricular imaging. Circulation 63:747–751

    Article  CAS  PubMed  Google Scholar 

  14. Mondillo S, Galderisi M, Ballo P et al; Study Group of Echocardiography of the Italian Society of Cardiology (2006) Left ventricular systolic longitudinal function: comparison among simple M-mode, pulsed, and M-mode color tissue Doppler of mitral annulus in healthy individuals. J Am Soc Echocardiogr 9:1085–1091

    Google Scholar 

  15. Borges AC, Sicari R, Picano E et al (1995) Heterogeneity of left ventricular regional wall thickening following dobutamine infusion in normal human subjects. Eur Heart J 11:1726–1730

    Google Scholar 

  16. Carstensen S, Ali SM, Stensgaard-Hansen FV et al (1995) Dobutamine-atropine stress echocardiography in asymptomatic healthy individuals. The relativity of stress-induced hyperkinesia. Circulation 92:3453–3463

    Article  CAS  PubMed  Google Scholar 

  17. Ross J Jr (1986) Assessment of ischemic regional myocardial dysfunction and its reversibility. Circulation 74:1186–1190

    Article  PubMed  Google Scholar 

  18. Derumeaux G, Loufoua J, Pontier G et al (2001) Tissue Doppler imaging differentiates transmural from nontransmural acute myocardial infarction after reperfusion therapy. Circulation 103:589–596

    Article  CAS  PubMed  Google Scholar 

  19. Hui L, Pemberton J, Hickey E et al (2007) The contribution of left ventricular muscle bands to left ventricular rotation: assessment by a 2-dimensional speckle tracking method. J Am Soc Echocardiogr 20:486–491

    Article  PubMed Central  PubMed  Google Scholar 

  20. Matre K, Moen CA, Fanneløp T et al (2007) Multilayer radial systolic strain can identify subendocardial ischemia: an experimental tissue Doppler imaging study of the porcine left ventricular wall. Eur J Echocardiogr 8:420–430

    Article  PubMed  Google Scholar 

  21. Skulstad H, Urheim S, Edvardsen T et al (2006) Grading of myocardial dysfunction by tissue Doppler echocardiography: a comparison between velocity, displacement, and strain imaging in acute ischemia. J Am Coll Cardiol 47:1672–1682

    Article  PubMed  Google Scholar 

  22. Tanaka H, Oishi Y, Mizuguchi Y et al (2008) Contribution of the pericardium to left ventricular torsion and regional myocardial function in patients with total absence of the left pericardium. J Am Soc Echocardiogr 21:268–274

    Article  PubMed  Google Scholar 

  23. Henein MY, Cailes J, O’Sullivan C et al (1995) Abnormal ventricular long-axis function in systemic sclerosis. Chest 108:1533–1540

    Article  CAS  PubMed  Google Scholar 

  24. Picano E (2003) Diabetic cardiomyopathy. the importance of being earliest. J Am Coll Cardiol 42:454–457

    Article  PubMed  Google Scholar 

  25. Henein MY, Gibson DG (1999) Long axis function in disease. Heart 81:229–231

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Bogaert J, Rademakers FE (2001) Regional nonuniformity of normal adult human left ventricle. Am J Physiol Heart Circ Physiol 280:H610–H620

    CAS  PubMed  Google Scholar 

  27. Duncan AM, O’Sullivan CA, Carr-White GS et al (2001) Long axis electromechanics during dobutamine stress in patients with coronary artery disease and left ventricular dysfunction. Heart 86:397–404

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Henein MY, Dinarevic S, O’Sullivan CA et al (1998) Exercise echocardiography in children with Kawasaki disease: ventricular long axis is selectively abnormal. Am J Cardiol 81:1356–1359

    Article  CAS  PubMed  Google Scholar 

  29. Gibson D (1993) M-mode echocardiography-an obsolete technique? In: Chambers J, Monaghan MJ (eds) Echocardiography: an international review. Oxford University Press, Oxford, pp 1–9

    Google Scholar 

  30. Strotmann JM, Escobar Kvitting JP, Wilkenshoff UM et al (1999) Anatomic M-mode echocardiography: a new approach to assess regional myocardial function. A comparative in vivo and in vitro study of both fundamental and second harmonic imaging modes. J Am Soc Echocardiogr 12:300–307

    Article  CAS  PubMed  Google Scholar 

  31. Li W, Hornung TS, Francis DP et al (2004) Relation of biventricular function quantified by stress echocardiography to cardiopulmonary exercise capacity in adults with Mustard (atrial switch) procedure for transposition of the great arteries. Circulation 110:1380–1386

    Article  PubMed  Google Scholar 

  32. Chan J, Wahi S, Cain P et al (2000) Anatomical M-mode: a novel technique for the quantitative evaluation of regional wall motion analysis during dobutamine echocardiography. Int J Card Imaging 16:247–255

    Article  CAS  PubMed  Google Scholar 

  33. Mimbs JS, Bauwens D, Cohen RD et al (1981) Effects of myocardial ischemia on quantitative ultrasonic backscatter and identification of responsible determinants. Circ Res 49:89–96

    Article  CAS  PubMed  Google Scholar 

  34. Picano E, Faletra F, Marini C et al (1993) Increased echodensity of transiently asynergic myocardium in humans: a novel echocardiographic sign of myocardial ischemia. J Am Coll Cardiol 21:199–207

    Article  CAS  PubMed  Google Scholar 

  35. Vitale DE, Bonow RO, Gerundo G et al (1995) Alterations in ultrasonic backscatter during exercise-induced myocardial ischemia in humans. Circulation 92:1452–1457

    Article  CAS  PubMed  Google Scholar 

  36. Gigli G, Maffei S, Picano E et al (1995) Cardiac cycle-dependent gray-level variation is not distorted by abnormal septal motion after cardiac surgery: a transesophageal videodensitometric study in humans. J Am Soc Echocardiogr 8:475–481

    Article  CAS  PubMed  Google Scholar 

  37. Marini C, Picano E, Varga A et al (1996) Cyclic variation in myocardial gray level as a marker of viability in man. A videodensitometric study. Eur Heart J 17:472–479

    Article  CAS  PubMed  Google Scholar 

  38. Perez JE, Waggoner AD, Barzilai B et al (1992) On-line assessment of ventricular function by automatic boundary detection and ultrasonic backscatter imaging. J Am Coll Cardiol 19:313–320

    Article  CAS  PubMed  Google Scholar 

  39. Lang RM, Vignon P, Weinert L et al (1996) Echocardiographic quantification of regional left ventricular wall motion with color kinesis. Circulation 93:1877–1885

    Article  CAS  PubMed  Google Scholar 

  40. Mor-Avi V, Caiani EG, Collins KA et al (2001) Combined assessment of myocardial perfusion and regional left ventricular function by analysis of contrast-enhanced power modulation images. Circulation 104:352–357

    Article  CAS  PubMed  Google Scholar 

  41. Ishii K, Miwa K, Sakurai T et al (2008) Detection of postischemic regional left ventricular delayed outward wall motion or diastolic stunning after exercise-induced ischemia in patients with stable effort angina by using color kinesis. J Am Soc Echocardiogr 21:309–314

    Article  PubMed  Google Scholar 

  42. Sutherland GR, Stewart MJ, Grouendstroem KWE et al (1994) Colour Doppler myocardial imaging: a new technique for assessment of myocardial function. J Am Soc Echocardiogr 7:441–458

    Article  CAS  PubMed  Google Scholar 

  43. Hatle L, Sutherland GR (2000) Regional myocardial function – a new approach. Eur Heart J 21:1337–1357

    Article  CAS  PubMed  Google Scholar 

  44. Derumeaux G, Ovize M, Loufoua J et al (1998) Doppler tissue imaging quantitates regional wall motion during ischemia and reperfusion. Circulation 97:1970–1977

    Article  CAS  PubMed  Google Scholar 

  45. Gorcsan J III, Strum DP, Mandarino WA et al (1997) Quantitative assessment of alterations in regional left ventricular contractility with color-coded tissue Doppler echocardiography: comparison with sonomicrometry and pressure-volume relations. Circulation 95:2423–2433

    Article  PubMed  Google Scholar 

  46. Fraser AG, Payne N, Madler CF et al (2003) Feasibility and reproducibility of off-line tissue Doppler measurement of regional myocardial function during dobutamine stress echocardiography. Eur J Echocardiogr 4:43–53

    Article  CAS  PubMed  Google Scholar 

  47. Madler CF, Payne N, Wilkenshoff U et al (2003) Noninvasive diagnosis of coronary artery disease by quantitative stress echocardiography: optimal diagnostic models using off-line tissue Doppler in the MYDISE study. Eur Heart J 25:123–131

    Google Scholar 

  48. Pasquet A, Yamada E, Armstrong G et al (1999) Influence of dobutamine or exercise stress on the results of pulsed-wave Doppler assessment of myocardial velocity. Am Heart J 138:753–758

    Article  CAS  PubMed  Google Scholar 

  49. Cain P, Short L, Baglin T et al (2002) Development of a fully quantitative approach to the interpretation of stress echocardiography using radial and longitudinal myocardial velocities. J Am Soc Echocardiogr 15:752–767

    Article  Google Scholar 

  50. Thomas G (2004) Tissue Doppler echocardiography – a case of right tool, wrong use. Cardiovasc Ultrasound 2:12

    Article  PubMed Central  PubMed  Google Scholar 

  51. Fleming D, Xia X, Mc Dicken WN et al (1994) Myocardial velocity gradients detected by Doppler imaging. Br J Radiol 799:679–688

    Article  Google Scholar 

  52. Urheim S, Edvardsen T, Torp H et al (2000) Myocardial strain by Doppler echocardiography: validation of a new method to quantify regional myocardial function. Circulation 102:1158–1164

    Article  CAS  PubMed  Google Scholar 

  53. Marciniak M, Claus P, Streb W et al (2008) The quantification of dipyridamole induced changes in regional deformation in normal, stunned or infarcted myocardium as measured by strain and strain rate: an experimental study. Int J Cardiovasc Imaging 24:365–376

    Article  PubMed  Google Scholar 

  54. Hoffmann R, Altiok E, Nowak B et al (2002) Strain rate measurement by Doppler echocardiography allows improved assessment of myocardial viability in patients with depressed left ventricular function. J Am Coll Cardiol 39:443–449

    Article  PubMed  Google Scholar 

  55. Ingul CB, Stoylen A, Slordahl SA et al (2007) Automated analysis of myocardial deformation at dobutamine stress echocardiography: an angiographic validation. J Am Coll Cardiol 49:1651–1659

    Article  PubMed  Google Scholar 

  56. Voigt JU, Exner B, Schmiedehausen K et al (2003) Strain-rate imaging during dobutamine stress echocardiography provides objective evidence of inducible ischemia. Circulation 107:2120–2126

    Article  PubMed  Google Scholar 

  57. Mastouri R, Mahenthiran J, Kamalesh M, Gradus-Pizlo I, Feigenbaum H, Sawada SG (2008) Prediction of ischemic events by anatomic M-mode strain rate stress echocardiography. J Am Soc Echocardiogr 21:299–306

    Article  PubMed  Google Scholar 

  58. Thomas G (2013) Doppler echocardiography. Methodology, applications and pitfalls. In: Nanda N (ed) Comprehensive textbook of echocardiography. Jaypee Brothers Medical Publishing, New Delhi, pp 65–73

    Google Scholar 

  59. Helle-Valle T, Crosby J, Edvardsen T et al (2005) New-noninvasive method for assessment of left ventricular rotation: speckle tracking echocardiography. Circulation 112:3149–3156

    Article  PubMed  Google Scholar 

  60. Suffoletto MS, Dohi K, Cannesson M et al (2006) Novel speckle-tracking radial strain from routine black-and-white echocardiographic images to quantify dyssynchrony and predict response to cardiac resynchronization therapy. Circulation 113:960–968

    Article  PubMed  Google Scholar 

  61. Amundsen BH, Helle-Valle T, Edvardsen T et al (2006) Noninvasive myocardial strain measurement by speckle tracking echocardiography: validation against sonomicrometry and tagged magnetic resonance imaging. J Am Coll Cardiol 47:789–793

    Article  PubMed  Google Scholar 

  62. Hanekom L, Cho GY, Leano R et al (2007) Comparison of two-dimensional speckle and tissue Doppler strain measurement during dobutamine stress echocardiography: an angiographic correlation. Eur Heart J 28:1765–1772

    Article  PubMed  Google Scholar 

  63. Yamada A, Luis SA, Sathianan D et al (2014) Reproducibility of regional and global longitudinal strains derived from two-dimensional speckle-tracking and Doppler tissue imaging between expert and novice readers during quantitative dobutamine stress echocardiography. J Am Soc Echocardiogr 27:880–887

    Article  PubMed  Google Scholar 

  64. Nagy A, Manomas A, Sahlen A et al (2015) Combination of contrast-enhanced wall motion analysis and myocardial deformation imaging during dobutamine stress echocardiography. Eur Heart J Cardiovasc Imaging 16:88–95

    Article  PubMed  Google Scholar 

  65. Takeuchi M, Lang RM (2007) Three-dimensional stress testing: volumetric acquisitions. Cardiol Clin 25:267–272

    Article  PubMed  Google Scholar 

  66. Hung J, Lang R, Flachskampf F, ASE et al (2007) 3D echocardiography: a review of the current status and future directions. J Am Soc Echocardiogr 20:213–233

    Article  PubMed  Google Scholar 

  67. Ahmad M, Xie T, McCulloch M et al (2001) Real-time three-dimensional dobutamine stress echocardiography in assessment stress echocardiography in assessment of ischemia: comparison with two-dimensional dobutamine stress echocardiography. J Am Coll Cardiol 37:1303–1309

    Article  CAS  PubMed  Google Scholar 

  68. Matsumura Y, Hozumi T, Arai K et al (2005) Non-invasive assessment of myocardial ischaemia using new real-time three-dimensional dobutamine stress echocardiography: comparison with conventional two-dimensional methods. Eur Heart J 26:1625–1632

    Article  PubMed  Google Scholar 

  69. Pratali L, Molinaro S, Corciu AI et al (2010) Feasibility of real time three-dimensional echocardiography: pharmacological and semi-supine exercise. Cardiovasc Ultrasound 8:10

    Article  PubMed Central  PubMed  Google Scholar 

  70. Barletta G, Del Bene R (2011) Feasibility of real-time three-dimensional echocardiography: pharmacological and semi-supine exercise. J Cardiovasc Med 12:455–459

    Article  Google Scholar 

  71. Aggeli C, Felekos I, Roussakis G et al (2011) Value of real-time three-dimensional adenosine stress contrast echocardiography in patients with known or suspected coronary artery disease. Eur J Echocardiogr 12:648–655

    Article  PubMed  Google Scholar 

  72. Johri AM, Chitty DW, Hua L et al (2014) Assessment of image quality in real-time three-dimensional dobutamine stress echocardiography: an integrated 2D and 3D approach. Echocardiography 32:496–507

    Article  PubMed  Google Scholar 

  73. Bombardini T (2005) Myocardial contractility in the echo lab: molecular, cellular and pathophysiological basis. Cardiovasc Ultrasound 3:27

    Article  PubMed Central  PubMed  Google Scholar 

  74. Bombardini T, Zoppè M, Ciampi Q et al (2013) Myocardial contractility in the stress echo lab: from pathophysiological toy to clinical tool. Cardiovasc Ultrasound 12:20

    Article  Google Scholar 

  75. Lown B (1997) The tyranny of technology. Hosp Pract 32:25

    CAS  Google Scholar 

  76. Feinstein AR (1985) Diagnostic and spectral markers. Clinical epidemiology. Saunders, Philadelphia, pp 597–631

    Google Scholar 

  77. US Dept of Health and human services (2004) Challenge and opportunity on the critical path of new medical products. FDA report. US Dept of Health and Human Services, Washington DC

    Google Scholar 

  78. Vasan RS (2006) Biomarkers of cardiovascular disease: molecular basis and practical considerations. Circulation 113:2335–2362

    Article  PubMed  Google Scholar 

  79. Picano E, Landini L, Distante A et al (1985) Angle dependence of ultrasonic backscatter in arterial tissues: a study in vitro. Circulation 72:572–576

    Article  CAS  PubMed  Google Scholar 

  80. Kawasaki M, Bouma BE, Bressner J et al (2006) Diagnostic accuracy of optical coherence tomography and integrated backscatter intravascular ultrasound images for tissue characterization of human coronary plaques. J Am Coll Cardiol 48:81–88

    Article  PubMed  Google Scholar 

  81. Nagueh SF, Middleton KJ, Kopelen HA et al (1997) Doppler tissue imaging: a noninvasive technique for evaluation of left ventricular relaxation and estimation of filling pressures. J Am Coll Cardiol 30:1527–1533

    Article  CAS  PubMed  Google Scholar 

  82. Paulus WJ, Tschöpe C, Sanderson JE et al (2007) How to diagnose diastolic heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the Heart Failure and Echocardiography Associations of the European Society of Cardiology. Eur Heart J 28:2539–2550

    Article  PubMed  Google Scholar 

  83. Galderisi M, Cattaneo F, Mondillo S (2007) Doppler echocardiography and myocardial dyssynchrony: a practical update of old and new ultrasound technologies. Cardiovasc Ultrasound 5:28

    Article  PubMed Central  PubMed  Google Scholar 

  84. Pellikka PA, Nagueh SF, Elhendy AA et al; American Society of Echocardiography (2007) American Society of Echocardiography recommendations for performance, interpretation, and application of stress echocardiography. J Am Soc Echocardiogr 20:1021–1041

    Google Scholar 

  85. Sicari R, Nihoyannopoulos P, Evangelista A et al; European Association of Echocardiography (2008) Stress echocardiography consensus statement of the European Association of Echocardiography. Eur J Echocardiogr 9:415–437

    Google Scholar 

  86. Colombo F (1996) A warning from the Internet: our freedom is at risk. La Repubblica, 8 January

    Google Scholar 

  87. Pellikka PA, Douglas PS, Miller JG et al (2013) American Society of Echocardiography Cardiovascular technology and research summit. A roadmap for 2020. J Am Soc Echocardiogr 26:325–338

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing

About this chapter

Cite this chapter

Marwick, T.H., Picano, E. (2015). New Ultrasound Technologies for Quantitative Assessment of Left Ventricular Function. In: Stress Echocardiography. Springer, Cham. https://doi.org/10.1007/978-3-319-20958-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20958-6_23

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20957-9

  • Online ISBN: 978-3-319-20958-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics