Skip to main content

Part of the book series: Analog Circuits and Signal Processing ((ACSP,volume 131))

  • 935 Accesses

Abstract

The advances in micro, nano and bio-technology help to create multidisciplinary medical systems by combining several fields in a single unit. These medical systems improve the healthcare quality which promotes the comfort of the human at low cost. Especially, miniaturization of the systems allows to implant the devices in the body. The implanted devices need to be replaced at the end of their lifetime. Therefore, the low-power electronic is required to increase the life span of the implanted devices and reduces the number of the invasive surgeries. In addition, the transcutaneous cables which energize the devices are replaced by the wireless power transfer methods for the mobility and health of the patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.-Y. Lee, M.Y. Su, M.-C. Liang, Y.-Y. Chen, C.-H. Hsieh, C.-M. Yang, H.-Y. Lai, J.-W. Lin, Q. Fang, A programmable implantable microstimulator SoC with wireless telemetry: application in closed-loop endocardial stimulation for cardiac pacemaker. IEEE Trans. Biomed. Circuits Syst. 5(6), 511–522 (2011)

    Article  Google Scholar 

  2. M. Southcott, K. MacVittie, J. Halamek, L. Halamkova, W.D. Jemison, R. Lobel, E. Katz, A pacemaker powered by an implantable biofuel cell operating under conditions mimicking the human blood circulatory system – battery not included. Phys. Chem. Chem. Phys. 15, 6278–6283 (2013)

    Article  Google Scholar 

  3. P.J. Blamey, R.C. Dowell, A.M. Brown, G.M. Clark, P.M. Seligman, Vowel and consonant recognition of cochlear implant patients using formant-estimating speech processors. J. Acoust. Soc. Am. 82(1), 48–57 (1987)

    Article  Google Scholar 

  4. K.V. Shenoy, M.T. Kaufman, M. Sahani, M.M. Churchland, A dynamical systems view of motor preparation: implications for neural prosthetic system design. Prog. Brain Res. 192, 33 (2011)

    Article  Google Scholar 

  5. V. Gilja, C.A. Chestek, I. Diester, J.M. Henderson, K. Deisseroth, K.V. Shenoy, Challenges and opportunities for next-generation intracortically based neural prostheses. IEEE Trans. Biomed. Eng. 58(7), 1891–1899 (2011)

    Article  Google Scholar 

  6. W. Mokwa, M. Goertz, C. Koch, I. Krisch, H.K. Trieu, P. Walter, Intraocular epiretinal prosthesis to restore vision in blind humans, in 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2008, EMBS 2008, Vancouver (2008), pp. 5790–5793

    Google Scholar 

  7. J. Ohta, Implantable CMOS biomedical devices, in 2012 IEEE International Meeting for Future of Electron Devices, Kansai (IMFEDK), Suita, pp. 1–2 (2012)

    Google Scholar 

  8. D.Q. Sun, M.A. Rahman, G. Fridman, C. Dai, B. Chiang, C.C. Della Santina, Chronic stimulation of the semicircular canals using a multichannel vestibular prosthesis: effects on locomotion and angular vestibulo-ocular reflex in chinchillas, in 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC, Boston (2011), pp. 3519–3523

    Google Scholar 

  9. A. Arami, M. Simoncini, O. Atasoy, W. Hasenkamp, S. Ali, A. Bertsch, E. Meurville, S. Tanner, H. Dejnabadi, V. Leclercq, P. Renaud, C. Dehollain, P. Farine, B.M. Jolles, K. Aminian, P. Ryser, Instrumented prosthesis for knee implants monitoring, in 2011 IEEE Conference on Automation Science and Engineering (CASE), Trieste (2011), pp. 828–835

    Google Scholar 

  10. J. Becedas, Brain-machine interfaces: basis and advances. IEEE Trans. Syst. Man Cybern. Part C: Appl. Rev. 42(6), 825–836 (2012)

    Article  Google Scholar 

  11. S. Park, K. Koo, S.M. Bang, J.Y. Park, S.Y. Song, D.D. Cho, A novel microactuator for microbiopsy in capsular endoscopes. J. Micromech. Microeng. 18(2), 025032 (2008)

    Google Scholar 

  12. J. Yoo, L. Yan, S. Lee, Y. Kim, H. Kim, B. Kim, H.-J. Yoo, A 5.2 mW self-configured wearable body sensor network controller and a 12 μW 54.9 % efficiency wirelessly powered sensor for continuous health monitoring system, in IEEE International Solid-State Circuits Conference – Digest of Technical Papers, 2009, ISSCC 2009, San Francisco (2009), pp. 290–291,291a

    Google Scholar 

  13. E.Y. Chow, A.L. Chlebowski, S. Chakraborty, W.J. Chappell, P.P. Irazoqui, Fully wireless implantable cardiovascular pressure monitor integrated with a medical stent. IEEE Trans. Biomed. Eng. 57(6), 1487–1496 (2010)

    Article  Google Scholar 

  14. G. Pan, L. Wang, Swallowable wireless capsule endoscopy: progress and technical challenges. Gastroenterol. Res. Pract. 2012, 9p (2012). Article ID 841691. doi:10.1155/2012/841691

    Google Scholar 

  15. J. Muthuswamy, S. Anand, A. Sridharan, Adaptive movable neural interfaces for monitoring single neurons in the brain. Front. Neurosci. 5, 94 (2011)

    Article  Google Scholar 

  16. A.C. Tikka, M. Faulkner, S.F. Al-Sarawi, Secure wireless actuation of an implanted microvalve for drug delivery applications. Smart Mater. Struct. 20(10), 105011 (2011)

    Google Scholar 

  17. H.N. Schwerdt, W. Xu, S. Shekhar, A. Abbaspour-Tamijani, B.C. Towe, F.A. Miranda, J. Chae, A fully passive wireless microsystem for recording of neuropotentials using RF backscattering methods. J. Microelectromechanical Syst. 20(5), 1119–1130 (2011)

    Article  Google Scholar 

  18. Y.-C. Shih, T. Shen, B.P. Otis, A 2.3 μ w wireless intraocular pressure/temperature monitor. IEEE J. Solid-State Circuits 46(11), 2592–2601 (2011)

    Google Scholar 

  19. K. Kong, J. Cha, D. Jeon, D. Cho, A rotational micro biopsy device for the capsule endoscope, in 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005 (IROS 2005), Edmonton (2005), pp. 1839–1843

    Google Scholar 

  20. E.Y. Chow, A.L. Chlebowski, P.P. Irazoqui, A miniature-implantable RF-wireless active glaucoma intraocular pressure monitor. IEEE Trans. Biomed. Circuits Syst. 4(6), 340–349 (2010)

    Article  Google Scholar 

  21. J. Ohta, Implantable CMOS imaging devices for bio-medical applications, in 2011 IEEE 54th International Midwest Symposium on Circuits and Systems (MWSCAS), Seoul (2011), pp. 1–4

    Google Scholar 

  22. P. Cong, N. Chaimanonart, W.H. Ko, D.J. Young, A wireless and batteryless 10-bit implantable blood pressure sensing microsystem with adaptive RF powering for real-time laboratory mice monitoring. IEEE J. Solid-State Circuits 44(12), 3631–3644 (2009)

    Article  Google Scholar 

  23. N. Samson, S. Dumont, M.-L. Specq, J.-P. Praud, Radio telemetry devices to monitor breathing in non-sedated animals. Respir. Physiol. Neurobiol. 179(2–3), 111–118 (2011)

    Article  Google Scholar 

  24. R.R. Harrison, H. Fotowat, R. Chan, R.J. Kier, R. Olberg, A. Leonardo, F. Gabbiani, Wireless neural/EMG telemetry systems for small freely moving animals. IEEE Trans. Biomed. Circuits Syst. 5(2), 103–111 (2011)

    Article  Google Scholar 

  25. S. Stanslaski, J. Giftakis, P. Stypulkowski, D. Carlson, P. Afshar, P. Cong, T. Denison, Emerging technology for advancing the treatment of epilepsy using a dynamic control framework, in 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (IEEE, Boston, 2011), pp. 753–756

    Book  Google Scholar 

  26. S. Spieth, A. Schumacher, T. Holtzman, P.D. Rich, D.E. Theobald, J.W. Dalley, R. Nouna, S. Messner, R. Zengerle, An intra-cerebral drug delivery system for freely moving animals. Biomed. Microdevices 14(5), 799–809 (2012)

    Article  Google Scholar 

  27. P. Chang, K.S. Hashemi, M.C. Walker, A novel telemetry system for recording EEG in small animals. J. Neurosci. Methods 201(1), 106–115 (2011)

    Article  Google Scholar 

  28. I. Nölte, S. Gorbey, H. Boll, G. Figueiredo, C. Groden, B. Lemmer, M.A. Brockmann, Maintained functionality of an implantable radiotelemetric blood pressure and heart rate sensor after magnetic resonance imaging in rats. Physiol. Meas. 32(12), 1941 (2011)

    Google Scholar 

  29. D. Russell, D. McCormick, A. Taberner, P. Nielsen, P. Hu, D. Budgett, M. Lim, S. Malpas, Wireless power delivery system for mouse telemeter, in Biomedical Circuits and Systems Conference, 2009, BioCAS 2009 (IEEE, Beijing, 2009), pp. 273–276

    Google Scholar 

  30. P. Cong, W.H. Ko, D.J. Young, Wireless batteryless implantable blood pressure monitoring microsystem for small laboratory animals. IEEE Sens. J. 10(2), 243–254 (2010)

    Article  Google Scholar 

  31. T.K. Givrad, J.-M.I. Maarek, W.H. Moore, D.P. Holschneider, Powering an implantable minipump with a multi-layered printed circuit coil for drug infusion applications in rodents. Ann. Biomed. Eng. 38(3), 707–713 (2010)

    Article  Google Scholar 

  32. D. Fan, D. Rich, T. Holtzman, P. Ruther, J.W. Dalley, A. Lopez, M.A. Rossi, J.W. Barter, D. Salas-Meza, S. Herwik, T. Holzhammer, J. Morizio, H.H. Yin, A wireless multi-channel recording system for freely behaving mice and rats. PLoS ONE 6(7), e22033, 07 (2011)

    Google Scholar 

  33. P. Salazar, R.D. O’Neill, M. Martin, R. Roche, J.L. González-Mora, Amperometric glucose microbiosensor based on a prussian blue modified carbon fiber electrode for physiological applications. Sens. Actuators B: Chem. 152(2), 137–143 (2011)

    Article  Google Scholar 

  34. T.C. Tsai, H.Z. Han, C.C. Cheng, L.C. Chen, H.C. Chang, J.J.J. Chen, Modification of platinum microelectrode with molecularly imprinted over-oxidized polypyrrole for dopamine measurement in rat striatum. Sens. Actuators B: Chem. 171172(0), 93–101 (2012)

    Article  Google Scholar 

  35. V. Marrella, P.L. Poliani, E. Fontana, A. Casati, V. Maina, B. Cassani, F. Ficara, M. Cominelli, F. Schena, M. Paulis, E. Traggiai, P. Vezzoni, F. Grassi, A. Villa, Anti-CD3ε mAb improves thymic architecture and prevents autoimmune manifestations in a mouse model of Omenn syndrome: therapeutic implications. Blood 120(5), 1005–1014 (2012)

    Article  Google Scholar 

  36. Y. Mou, B.J. Wilgenburg, Y.J. Lee, J.M. Hallenbeck, A method for hypothermia-induction and maintenance allows precise body and brain temperature control in mice. J. Neurosci. Methods 213(1), 1–5 (2013)

    Article  Google Scholar 

  37. J.N. Crawley, Whats Wrong with My Mouse? Behavioral Phenotyping of Transgenic and Knockout Mice, 2 edn. (Wiley, Hoboken, 2007)

    Book  Google Scholar 

  38. V. Reinhardt, A. Reinhardt (eds.), Comfortable Quarters for Laboratory Animals, 9 edn. (Animal Welfare Institute, Washington, DC, 2002)

    Google Scholar 

  39. S.A.G. Willis-Owen, J. Flint, The genetic basis of emotional behaviour in mice. Eur. J. Hum. Genet. 14(6), 721–728 (2006)

    Article  Google Scholar 

  40. Q. Wang, H.R. Brunner, M. Burnier, Determination of cardiac contractility in awake unsedated mice with a fluid-filled catheter. Am. J. Physiol. – Heart Circ. Physiol. 286(2), H806–H814 (2004)

    Google Scholar 

  41. P. Brain, What does individual housing mean to a mouse? Life Sci. 16(2), 187–200 (1975)

    Article  Google Scholar 

  42. M.M. Ahmadi, G.A. Jullien, A wireless-implantable microsystem for continuous blood glucose monitoring. IEEE Trans. Biomed. Circuits Syst. 3(3), 169–180 (2009)

    Article  Google Scholar 

  43. S. Carrara, A. Cavallini, V. Erokhin, G. De Micheli, multi-panel drugs detection in human serum for personalized therapy. Biosens. Bioelectron. 26(9), 3914–3919 (2011)

    Article  Google Scholar 

  44. E. Wilkins, P. Atanasov, B.A. Muggenburg, Integrated implantable device for long-term glucose monitoring. Biosens. Bioelectron. 10(5), 485–494 (1995)

    Article  Google Scholar 

  45. M. Sawan, Y. Hu, J. Coulombe, Wireless smart implants dedicated to multichannel monitoring and microstimulation. IEEE Circuits Syst. Mag. 5(1), 21–39 (2005)

    Article  Google Scholar 

  46. C. Boero, S. Carrara, G. De Micheli, New technologies for nanobiosensing and their applications to real-time monitoring, in 2011 IEEE Biomedical Circuits and Systems Conference (BioCAS), San Diego, 10–12 Nov 2011, pp. 357–360

    Google Scholar 

  47. D.C. Yates, A.S. Holmes, A.J. Burdett, Optimal transmission frequency for ultralow-power short-range radio links. IEEE Trans. Circuits Syst. I: Regul. Pap. 51(7), 1405–1413 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kilinc, E.G., Dehollain, C., Maloberti, F. (2016). Introduction. In: Remote Powering and Data Communication for Implanted Biomedical Systems. Analog Circuits and Signal Processing, vol 131. Springer, Cham. https://doi.org/10.1007/978-3-319-21179-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21179-4_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21178-7

  • Online ISBN: 978-3-319-21179-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics