Skip to main content

Part of the book series: Monographs in Electrochemistry ((MOEC))

  • 1671 Accesses

Abstract

In a single potential step voltammetric technique, several constant potentials (of increasing amplitude) are applied with a time length t 1. When stationary electrodes are used, the time interval between two consecutive potentials must be much greater than t 1, for the initial conditions to be restored (Scheme 2.1). If a Static Mercury Drop Electrode (SMDE) is used, the initial conditions are simply restored by making the drop fall. The measured current at a fixed time value \( t={t}_1 \) is plotted versus the corresponding potential steps discretely [1–3]. The resulting current–potential curve has a sigmoidal shape whose position and slope depend on the reversibility of the electrode process and the wave height is independent of the electron transfer rate. At each fixed potential value, the current–time variation (which has a typical cottrellian behavior for reversible processes at planar electrodes when considering diffusive transport only) can be registered. If the length time is in the range 2–200 ms, the electrochemical technique is called Normal Pulse Voltammetry (NPV), originally known as Normal Pulse Polarography (NPP). This technique was introduced by Barker [5–7] and it was originally designed for the Dropping Mercury Electrode (DME), in which the potential pulse is applied at the end of the life of the drop, with the current being dependent on the relation between the pulse time and the drop lifetime. The main reason for measuring the current at the end of short time intervals is to eliminate the capacitative component (see Sect. 1.9) in order to optimize the sensitivity. Today the DME electrode is scarcely used and most electrochemical techniques are used at stationary electrodes

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    An electrochemical reaction is called “reversible” or nernstian when the Nernst’s equation can be applied to the surface concentrations of electroactive species for any value of the applied potential (see Sect. 1.7).

  2. 2.

    The reduction of \( {\mathrm{Tl}}^{+} \) takes place at a mercury electrode so the metals are amalgamated into the electrode.

  3. 3.

    Natural convection associated to temperature or density gradients or vibrations is present in the usual experiments [1416].

  4. 4.

    Enhancement of the diffusion flux at the edge of an inlaid electrode.

  5. 5.

    For a cartesian set of coordinates, like those used for band electrodes, q denotes coordinates x, y, and z, whereas for a cylindrical set of coordinates, like those corresponding to disc electrodes, q denotes coordinates r and z. In both cases, q s refers to z = 0.

References

  1. Galus Z (1993) Fundamentals of electrochemical analysis, 2nd/rev edn. Ellis Horwood series in analytical chemistry. Ellis Horwood, Chichester

    Google Scholar 

  2. Bard AJ, Faulkner LR (2001) Electrochemical methods, fundamental and applications. Wiley, New York, NY

    Google Scholar 

  3. Heyrovský J (1966) Principles of polarography. Academic, New York, NY

    Google Scholar 

  4. MacDonald DD (1958) Transient techniques in electrochemistry. Plenum, New York, NY

    Google Scholar 

  5. Barker GC (1958) Anal Chim Acta 18:118–131

    Article  CAS  Google Scholar 

  6. Barker GC, Gardner AW (1958) Atomic Energy Res Estab Harwell C/R 2297

    Google Scholar 

  7. Barker GC, Gardner AW (1960) Z Anal Chem 173:79–83

    Article  CAS  Google Scholar 

  8. Bard AJ, Inzelt G, Scholz F (eds) (2008) Electrochemical dictionary. Springer, Berlin

    Google Scholar 

  9. Montenegro I, Queiros MA, Daschbach JL (eds) (1991) Microelectrodes: theory and applications (Nato Science Series E). Kluwer Academic, Dordrecht

    Google Scholar 

  10. Amatore C (1995) In: Rubinstein I (ed) Physical electrochemistry: principles, methods and applications. Marcel Dekker, New York, NY

    Google Scholar 

  11. Brett CMA, Brett AMO (1993) Electrochemistry: principles, methods, and applications. Oxford University Press, Oxford

    Google Scholar 

  12. Molina A, Gonzalez J, Martinez-Ortiz F, Compton RG (2010) J Phys Chem C 114:4093–4099

    Article  CAS  Google Scholar 

  13. Cottrell FG (1902) Z Phys Chem 42:385

    Google Scholar 

  14. Gao X, Lee J, White HS (1995) Anal Chem 67:1541–15445

    Article  CAS  Google Scholar 

  15. Amatore C, Knobloch K, Thouin L (2007) J Electroanal Chem 601:17–28

    Article  CAS  Google Scholar 

  16. Amatore C, Pebay C, Thouin L, Wang A (2009) Electrochem Commun 11:1269–1272

    Article  CAS  Google Scholar 

  17. Tomeš J (1937) Czech Collect Chem Commun 9:12

    Article  Google Scholar 

  18. Koryta J, Vanýsek P, Brezina M (1977) J Electroanal Chem 75:211–228

    Article  CAS  Google Scholar 

  19. Samec Z (2004) Pure Appl Chem 76:2147–2180

    Article  CAS  Google Scholar 

  20. Volkov AG (1988) Electrochim Acta 44:139–153

    Article  Google Scholar 

  21. Peljo P, Murtomäki L, Kallio T, Xu HJ, Meyer M, Gros CP, Barbe JM, Girault HH, Laasonen K, Kontturi KS (2012) J Am Chem Soc 134:5974–5984

    Article  CAS  Google Scholar 

  22. Molina A, Serna C, Ortuño JA, Torralba E (2012) Annu Rep Prog Chem Sect C 108:126–176

    Article  CAS  Google Scholar 

  23. Gavach C, Mlodnicka T, Guastalla J (1968) C R Acad Sci C 266:1196–1199

    CAS  Google Scholar 

  24. Vanýsek P (1995) Electrochim Acta 40:2841–2847

    Article  Google Scholar 

  25. Shirai O, Kihara S, Yoshida Y, Matsui M (1995) J Electroanal Chem 389:61–70

    Article  Google Scholar 

  26. Langmaier J, Samec Z (2007) Electrochem Commun 9:2633–2638

    Article  CAS  Google Scholar 

  27. Senda M, Kakiuchi T, Osakai T (1991) Electrochim Acta 36:253–262

    Article  CAS  Google Scholar 

  28. Scholz F (2006) Annu Rep Prog Chem Sect C 102:43–70

    Google Scholar 

  29. Ortuño J, Serna C, Molina A, Torralba E (2009) Electroanalysis 21:2297–2302

    Article  Google Scholar 

  30. Molina A, Serna C, Gonzalez J, Ortuño J, Torralba E (2009) Phys Chem Chem Phys 11:1159–1166

    Article  CAS  Google Scholar 

  31. Girault HH (2004) Analytical and physical electrochemistry, Fundamental sciences series. EFPL Press, Lausanne

    Book  Google Scholar 

  32. Ilkovič D (1934) Czech Collect Chem Commun 6:498–513

    Article  Google Scholar 

  33. Kolthoff IM, Lingane JJ (1952) Polarography, 2nd edn. Wiley-Interscience, New York, NY

    Google Scholar 

  34. Meites L (1958) Polarographic techniques, 2nd edn. Wiley-Interscience, New York, NY

    Google Scholar 

  35. Koutecký J (1953) Czech J Phys 2:50–58

    Article  Google Scholar 

  36. Koutecký J, Stackelberg MV (1962) In: Zuman P, Kolthoff IM (eds) Progress in polarography, vol I. Wiley-Interscience, New York, NY

    Google Scholar 

  37. Newman J (1967) J Electroanal Chem 15:309–312

    Article  CAS  Google Scholar 

  38. Brikmann AAAM, Loss JM (1964) J Electroanal Chem 7:171–183

    Google Scholar 

  39. Galvez J, Serna A (1976) J Electroanal Chem 69:133–143

    Article  CAS  Google Scholar 

  40. Molina A, Serna C, Camacho L (1995) J Electroanal Chem 394:1–6

    Article  Google Scholar 

  41. Molina A, Serna C (1999) J Electroanal Chem 466:8–14

    Article  Google Scholar 

  42. Wang J (2006) Analytical Electrochemistry, 3rd edn. Wiley-VCH, New York, NY

    Book  Google Scholar 

  43. Lovrić M (2002) Stripping voltammetry. In: Scholz F (ed) Electroanalytical methods: guide to experiments and applications. Springer, Berlin

    Google Scholar 

  44. Demaille C, Brust M, Tsionsky M, Bard AJ (1997) Anal Chem 69:2323–2328

    Article  CAS  Google Scholar 

  45. Amatore C, Maisonhaute E, Schçllhorn B, Wadhawan J (2007) Chem Phys Chem 8:1321–1329

    CAS  Google Scholar 

  46. Martinez Ortiz F, Laborda E, Limon-Petersen JG, Rogers EI, Serna C, Rees NV, Molina A, Compton RG (2009) J Phys Chem C 113:17215–17222

    Article  CAS  Google Scholar 

  47. Scholz F (2011) J Solid Stat Electrochem 15:1699–1702

    Article  CAS  Google Scholar 

  48. Hapiot P, Lagrost C (2008) Chem Rev 108:2238–2264

    Article  CAS  Google Scholar 

  49. Molina A, Laborda E, Rogers EI, Martinez-Ortiz F, Serna C, Limon-Petersen JG, Rees NV, Compton RG (2009) J Electroanal Chem 634:90–97

    Article  Google Scholar 

  50. Rogers EI, Silvester DS, Poole DL, Aldous L, Hardacre C, Compton RG (2008) J Phys Chem C 112:2729–2735

    Article  CAS  Google Scholar 

  51. Laborda E, Rogers EI, Martinez-Ortiz F, Limon-Petersen JG, Rees NV, Molina A, Compton RG (2009) J Electroanal Chem 634:1–10

    Article  CAS  Google Scholar 

  52. Molina A, Serna C, Martínez-Ortiz F, Laborda E (2008) J Electroanal Chem 617:14–26

    Article  CAS  Google Scholar 

  53. Delmastro JR, Smith DE (1966) Anal Chem 38:169–179

    Article  CAS  Google Scholar 

  54. Delmastro JR, Smith DE (1967) J Phys Chem 71:2138–2149

    Article  Google Scholar 

  55. MacGillavry D, Rideal EK (1937) Recl Trav Chim 56:1013

    Article  CAS  Google Scholar 

  56. Polo S, Llopis J, Rius A (1949) An Quim 45:1029

    Google Scholar 

  57. Saito Y (1968) Rev Polarograph 15:177–187

    Article  CAS  Google Scholar 

  58. Compton RG, Banks CE (2011) Understanding voltammetry, 2nd edn. ICP, London

    Book  Google Scholar 

  59. Molina A, Gonzalez J, Henstrindge M, Compton RG (2011) Electrochim Acta 56:4589–4594

    Article  CAS  Google Scholar 

  60. Molina A, Gonzalez J, Henstrindge M, Compton RG (2011) J Phys Chem C 115:4054–4062

    Article  CAS  Google Scholar 

  61. Alden JA, Hutchinson F, Compton RG (1997) J Phys Chem B 101:949–958

    Article  CAS  Google Scholar 

  62. Rees NV, Zhou YG, Compton RG (2012) RSC Adv 2:379–384

    Article  CAS  Google Scholar 

  63. Kwon SJ, Fu-Ren F, Bard AJ (2010) J Am Chem Soc 132:13165–13167

    Article  CAS  Google Scholar 

  64. Hellberg D, Scholz F, Schauer F, Weitschies W (2002) Electrochem Commun 4:305–309

    Article  CAS  Google Scholar 

  65. Hellberg D, Scholz F, Schubert F, Lovrić M, Omanović D, Hernandez VA, Thede R (2005) J Phys Chem B 109:14715–14726

    Article  CAS  Google Scholar 

  66. Forster RJ (2003) Microelectrodes: retrospect and prospect. In: Bard AJ, Stratmann M, Unwin P (eds) Encyclopedia of electrochemistry, vol 3, Instrumentation and electroanalytical chemistry. Wiley-VCH, Weinheim, pp 160–195

    Google Scholar 

  67. Zoski CG (ed) (2007) Handbook of electrochemistry. Elsevier, Amsterdam

    Google Scholar 

  68. Wang Y, Velmurugan J, Mirkin MV (2010) Isr J Chem 50:291–305

    Article  Google Scholar 

  69. Wightman RM, Wipf DO (1988) Voltammetry at Ultramicroelectrodes. In: Bard AJ (ed) Electroanalytical chemistry, vol 15. Marcel Dekker, New York, pp 267–353

    Google Scholar 

  70. Oldham KB, Zoski CG (1988) J Electroanal Chem 256:11–19

    Article  CAS  Google Scholar 

  71. Amatore CA, Fosset B (1992) J Electroanal Chem 328:21–32

    Article  CAS  Google Scholar 

  72. Henstridge M, Compton RG (2012) Chem Rec 12:63–71

    Article  CAS  Google Scholar 

  73. Bobbert PA, Winf MM, Vlieger J (1987) Phys A 141:58–72

    Article  Google Scholar 

  74. Molina A, Gonzalez J, Barnes EO, Compton RG (2014) J Phys Chem C 118:346–356

    Article  CAS  Google Scholar 

  75. Newman JS (1991) Electrochemical Systems, 2nd edn. Prentice Hall, Englewood Cliffs, NJ, Chaps. 15 and 17

    Google Scholar 

  76. Levich VG (1962) Physicochemical hydrodynamics. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  77. Hubbard AT, Anson FC (1970) The theory and practice of electrochemistry with thin layer cells. In: Bard AJ (ed) Electroanalytical chemistry, vol 4. Marcel Dekker, New York, NY, pp 129–214

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Molina, Á., González, J. (2016). Single Pulse Voltammetry: Reversible Electrochemical Reactions. In: Pulse Voltammetry in Physical Electrochemistry and Electroanalysis. Monographs in Electrochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-21251-7_2

Download citation

Publish with us

Policies and ethics