Skip to main content

Abstract

In pediatric population, approximately 12 % of all malignancies are represented by lymphoma, and of these, the majority are composed of non-Hodgkin lymphoma, whereas 40 % are represented by Hodgkin disease (HD). NHL is more common in younger children and preteen age, whereas HD shows a bimodal age distribution with an initial peak incidence around 14 years of age. A different prognosis is also reported in the two lymphoma types, with over 90–95 % of patients with HD having a 5-year event-free survival upon 70–85 % of NHL patients.

Treatment options comprise different combination of chemotherapy regimens and/or consolidation radiotherapy, which can be safely omitted in limited stages and good responders after few cycles of chemotherapy. In this context, instrumental imaging becomes crucial either for disease staging or for a proper treatment response assessment. This fact is confirmed by the introduction of early response to chemotherapy as a predictor to disease outcome in recent trials.

As for other malignancies, a significant role in the evaluation of HD and NHL is played by 18F-fluorodeoxyglucose PET (18F-FDG PET). As a noninvasive imaging technique, it allows for a whole-body detection of all lymphatic and extralymphatic sites of disease, resulting superior to other conventional imaging modalities. Moreover, this imaging modality allows a reliable identification of residual tumor after treatment, thus significantly improving treatment planning and overall survival. Therefore, the method is recommended for initial staging and for response assessment of pediatric lymphoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kaatsch P (2010) Epidemiology of childhood cancer. Cancer Treat Rev 36:277–285

    Article  PubMed  Google Scholar 

  2. Allen CE, Kelly KM, Bollard CM (2015) Pediatric lymphomas and histiocytic disorders of childhood. Pediatr Clin North Am 62:139–165

    Article  PubMed  Google Scholar 

  3. Kelly KM, Hodgson D, Appel B et al (2013) Children’s Oncology Group’s 2013 blueprint for research: Hodgkin lymphoma. Pediatr Blood Cancer 60(6):972–978

    Article  PubMed  Google Scholar 

  4. Kanzler H, Kuppers R, Hansmann ML et al (1996) Hodgkin and Reed-Sternberg cells in Hodgkin’s disease represent the outgrowth of a dominant tumor clone derived from (crippled) germinal center B cells. J Exp Med 184(4):1495–1505

    Article  CAS  PubMed  Google Scholar 

  5. Kluge R, Kurch L, Montravers F, Mauz-Koerholz C (2013) FDG PET/CT in children and adolescents with lymphoma. Pediatr Radiol 43:406–417

    Article  PubMed  Google Scholar 

  6. Harris NL, Jaffe ES, Stein H et al (1994) A revised European-American classification of lymphoid neoplasm: a proposal from the International Lymphoma Study Group. Blood 84:1361–1392

    CAS  PubMed  Google Scholar 

  7. Carbone PP, Kaplan HS, Musshoff K et al (1971) Report of the Committee on Hodgkin’s disease staging classification. Cancer Res 31(11):1860–1861

    CAS  PubMed  Google Scholar 

  8. Lister TA, Crowther D, Sutcliffe SB et al (1989) Report of a committee convened to discuss the evaluation and staging of patients with Hodgkin’s disease: Cotswolds meeting. J Clin Oncol 7(11):1630–1636

    CAS  PubMed  Google Scholar 

  9. Edge SB, Byrd DR, Compton CC et al (eds) (2010) AJCC cancer staging manual, 7th edn. Springer, New York

    Google Scholar 

  10. Biasoli I, Stamatoullas A, Meignin V et al (2010) Nodular, lymphocyte-predominant Hodgkin lymphoma: a long-term study and analysis of transformation to diffuse large B-cell lymphoma in a cohort of 164 patients from the Adult Lymphoma Study Group. Cancer 116(3):631–639

    Article  PubMed  Google Scholar 

  11. Kabickova E, Sumerauer D, Cumlivska E et al (2006) Comparison of 18F-FDG-PET and standard procedures for the pretreatment staging of children and adolescents with Hodgkin’s disease. Eur J Nucl Med Mol Imaging 33:1025–1031

    Article  PubMed  Google Scholar 

  12. London K, Cross S, Onikul E et al (2011) 18F-FDG PET/CT in paediatric lymphoma: comparison with conventional imaging. Eur J Nucl Med Mol Imaging 38:274–284

    Article  PubMed  Google Scholar 

  13. Lopci E, Burnelli R, Ambrosini V, Nanni C, Castellucci P, Biassoni L, Rubello D, Fanti S (2008) (18)F-FDG PET in pediatric lymphomas: a comparison with conventional imaging. Cancer Biother Radiopharm 23(6):681–690

    Article  CAS  PubMed  Google Scholar 

  14. Weiler-Sagie M, Bushelev O, Epelbaum R et al (2010) (18)F-FDG avidity in lymphoma readdressed: a study of 766 patients. J Nucl Med 51:25–30

    Article  PubMed  Google Scholar 

  15. Purz S, Mauz-Koerholz C, Koerholz D et al (2011) [18F]fluorodeoxyglucose positron emission tomography for detection of bone marrow involvement in children and adolescents with Hodgkin’s lymphoma. J Clin Oncol 29:3523–3528

    Article  PubMed  Google Scholar 

  16. Simpson CD, Gao J, Fernandez CV, Yhap M, Price VE, Berman JN (2008) Routine bone marrow examination in the initial evaluation of paediatric Hodgkin lymphoma: the Canadian perspective. Br J Haematol 141(6):820–826

    Article  PubMed  Google Scholar 

  17. Agrawal K, Rai Mittal B, Bansal D et al (2013) Role of F-18 FDG PET/CT in assessing bone marrow involvement in pediatric Hodgkin’s lymphoma. Ann Nucl Med 27:146–151

    Article  CAS  PubMed  Google Scholar 

  18. Cheson BD, Fisher RI, Barrington SF et al (2014) Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol 32(27):3059–3068

    Article  PubMed  Google Scholar 

  19. Depas G, Barsy C, Jerusalem G, Hoyoux C, Dresse MF, Fassotte MF, Paquet N, Foidart J, Rigo P, Hustinx R (2005) 18F-FDG PET in children with lymphomas. Eur J Nucl Med Mol Imaging 32:31–38

    Article  PubMed  Google Scholar 

  20. Cheng G, Servaes S, Zhuang H (2013) Value of (18)F-fluoro-2-deoxy-d-glucose positron emission tomography/computed tomography scan versus diagnostic contrast computed tomography in initial staging of pediatric patients with lymphoma. Leuk Lymphoma 54:737–742

    Article  CAS  PubMed  Google Scholar 

  21. Sioka C (2013) The utility of FDG PET in diagnosis and follow-up of lymphoma in childhood. Eur J Pediatr 172:733–738

    Article  PubMed  Google Scholar 

  22. Hermann S, Wormanns D, Pixberg M, Hunold A, Heindel W, Jurgens H, Schober O, Franzius C (2005) Staging in childhood lymphoma: differences between FDG-PET and CT. Nuklearmedizin 44:1–7

    CAS  PubMed  Google Scholar 

  23. Miller E, Metser U, Avrahami G, Dvir R, Valdman D, Sira LB, Sayar D, Burstein Y, Toren A, Yaniv I, Even-Sapir E (2006) Role of 18F-FDG PET/CT in staging and follow-up of lymphoma in pediatric and young adult patients. J Comput Assist Tomogr 30:689–694

    Article  PubMed  Google Scholar 

  24. Montravers F, McNamara D, Landman-Parker J, Grahek D, Kerrou K, Younsi N, Wioland M, Leverger G, Talbot JN (2002) [(18)F]FDG in childhood lymphoma: clinical utility and impact on management. Eur J Nucl Med Mol Imaging 29:1155–1165

    Article  CAS  PubMed  Google Scholar 

  25. Paulino AC, Margolin J, Dreyer Z, Teh BS, Chiang S (2012) Impact of PET-CT on involved field radiotherapy design for pediatric Hodgkin lymphoma. Pediatr Blood Cancer 58:860–864

    Article  PubMed  Google Scholar 

  26. Lopci E, Burnelli R, Guerra L et al (2011) Postchemotherapy PET evaluation correlated with patient outcome in paediatric Hodgkin’s disease. Eur J Nucl Med Mol Imaging 38:1620–1627

    Article  PubMed  Google Scholar 

  27. Spaepen K, Stroobants S, Dupont P et al (2001) Can positron emission tomography with [18F]-fluorodeoxyglucose after first-line treatment distinguish Hodgkin’s disease patients who need additional therapy from others in whom additional therapy would mean avoidable toxicity? Br J Haematol 115:272–278

    Article  CAS  PubMed  Google Scholar 

  28. Anderson H, Singh N, Miles K (2010) Tumour response evaluation with fluorodeoxyglucose positron emission tomography: research technique or clinical tool? Cancer Imaging 10:S68–S72

    Article  PubMed Central  PubMed  Google Scholar 

  29. Barnes JA, Lacasce AS, Zukotynski K et al (2011) End-of-treatment but not interim PET scan predicts outcome in nonbulky limited-stage Hodgkin’s lymphoma. Ann Oncol 22:910–915

    Article  CAS  PubMed  Google Scholar 

  30. Furth C, Steffen IG, Amthauer H et al (2009) Early and late therapy response assessment with [18F]fluorodeoxyglucose positron emission tomography in pediatric Hodgkin’s Lymphoma: analysis of a prospective multicenter trial. J Clin Oncol 27:4385–4391

    Article  PubMed  Google Scholar 

  31. Kobe C, Dietlein M, Franklin J et al (2008) Positron emission tomography has a high negative predictive value for progression or early relapse for patients with residual disease after first line chemotherapy in advanced-stage Hodgkin lymphoma. Blood 112(10):3989–3994

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Meignan M, Gallamini A, Haioun C (2009) Report on the first workshop on interim-PET-scan in lymphoma. Leuk Lymphoma 50:1257–1260

    Article  PubMed  Google Scholar 

  33. Schwartz CL, Constine LS, Villaluna D et al (2009) A risk-adapted, response-based approach using ABVE-PC for children and adolescents with intermediate- and high-risk Hodgkin lymphoma: the results of P9425. Blood 114(10):2051–2059

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Körholz D, Kluge R, Wickmann L et al (2003) Importance of F18-fluorodeoxy-D-2-glucose positron emission tomography (FDGPET) for staging and therapy control of Hodgkin’s lymphoma in childhood and adolescence—consequences for the GPOH-HD 2003 protocol. Onkologie 26:489–493

    Article  PubMed  Google Scholar 

  35. Kelly KM, Sposto R, Hutchinson R et al (2011) BEACOPP chemotherapy is a highly effective regimen in children and adolescents with high-risk Hodgkin lymphoma: a report from the Children’s Oncology Group. Blood 117(9):2596–2603

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Cheson BD, Pfistner B, Juweid ME et al (2007) Revised response criteria for malignant lymphoma. J Clin Oncol 25(5):579–586

    Article  PubMed  Google Scholar 

  37. Juweid ME, Stroobants S, Hoekstra OS et al (2007) Use of positron emission tomography for response assessment of lymphoma: consensus of the Imaging Subcommittee of International Harmonization Project in Lymphoma. J Clin Oncol 25(5):571–578

    Article  PubMed  Google Scholar 

  38. Hasenclever D, Kurch L, Mauz-Koelholz C et al (2014) qPET – a quantitative extension of the Deauville scale to assess response in interim FDG-PET scans in lymphoma. Eur J Nucl Med Mol Imaging 41:1301–1308

    Article  PubMed  Google Scholar 

  39. Levine JM, Weiner M, Kelly KM (2006) Routine use of PET scans after completion of therapy in pediatric Hodgkin disease results in a high false positive rate. J Pediatr Hematol Oncol 28(11):711–714

    Article  PubMed  Google Scholar 

  40. Kobe C, Diellein M, Kriz J et al (2010) The role of PET in Hodgkin’s lymphoma and its impact on radiation oncology. Expert Rev Anticancer Ther 10:1419–1428

    Article  PubMed  Google Scholar 

  41. Klapper W, Oschlies I (2012) Specifics of histopathological and genetical diagnosis and classification of lymphomas in children and adolescents. Klin Padiatr 224:183–190

    Article  CAS  PubMed  Google Scholar 

  42. Reiter A, Ferrando AA (2009) Malignant lymphomas and lymphadenopathies. In: Orkin SH et al (eds) Oncology of infancy and childhood. Saunders, Philadelphia, pp 417–505

    Chapter  Google Scholar 

  43. Iversen OH, Iversen U, Ziegler JL et al (1974) Cell kinetics in Burkitt lymphoma. Eur J Cancer 10:155–163

    Article  CAS  PubMed  Google Scholar 

  44. Molyneux EM, Rochford R, Griffin B et al (2012) Burkitt’s lymphoma. Lancet 379:1234–1244

    Article  PubMed  Google Scholar 

  45. Abramson SJ, Price AC (2008) Imaging of pediatric lymphomas. Radiol Clin North Am 46:313–338

    Article  PubMed  Google Scholar 

  46. Pinkerton R (2005) Continuing challenges in childhood non-Hodgkin’s. Br J Haematol 130:480–488

    Article  PubMed  Google Scholar 

  47. Cairo MS, Raetz E, Lim MS et al (2005) Childhood and adolescent non-Hodgkin lymphoma: new insights in biology and critical challenges for the future. Pediatr Blood Cancer 45:753–769

    Article  PubMed  Google Scholar 

  48. Murphy SB (2010) Classification, staging and end results of treatment of childhood non-Hodgkin’s lymphomas: dissimilarities from lymphomas in adults. Semin Oncol 7:332–339

    Google Scholar 

  49. Muslimani AA, Faraq HL, Francis S et al (2008) The utility of 18-F-fluorodeoxyglucose positron emission tomography in evaluation of bone marrow involvement by non-Hodgkin lymphoma. Am J Clin Oncol 31:409–412

    Article  PubMed  Google Scholar 

  50. Cheng G, Chen W, Chamroonrat W, Torigian DA, Zhuang H, Alavi A (2011) Biopsy versus FDG PET/CT in the initial evaluation of bone marrow involvement in pediatric lymphoma patients. Eur J Nucl Med Mol Imaging 38(8):1469–1476

    Article  PubMed  Google Scholar 

  51. Moog F, Bangerter M, Diederichs CG et al (1998) Extranodal malignant lymphoma: detection with FDG PET versus CT. Radiology 206:475–481

    Article  CAS  PubMed  Google Scholar 

  52. Cahu X, Bodet-Milin C, Brissot E et al (2010) 18F-fluorodeoxyglucose-positron emission tomography before, during and after treatment in mature T/NK lymphomas: a study from the GOELAMS group. Ann Oncol 22:705–711

    Article  PubMed  Google Scholar 

  53. Rini JN, Leonidas JC, Tomas MB et al (2003) 18F-FDG PET versus CT for evaluating the spleen during initial staging of lymphoma. J Nucl Med 44:1072–1074

    PubMed  Google Scholar 

  54. Meignan M (2010) Interim PET, in lymphoma: step towards standardization. Eur J Nucl Med Mol Imaging 37:1821–1823

    Article  PubMed  Google Scholar 

  55. Wahl RL, Jacene H, Kasamon Y et al (2009) From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med 5:122–150

    Article  Google Scholar 

  56. Casasnovas R, Meignan M, Berriolo-Riedinger A et al (2011) SUVmax reduction improves early prognosis value of interim positron emission tomography scans in diffuse large B-cell lymphoma. Blood 118:37–43

    Article  CAS  PubMed  Google Scholar 

  57. Moskowitz C (2012) Diffuse large B cell lymphoma: how can we cure more patients in 2012? Best Pract Res Clin Haematol 25:41–44

    Article  PubMed  Google Scholar 

  58. Amthauer H, Furth C, Denecke T et al (2005) FDG-PET in 10 children with non-Hodgkin’s lymphoma: initial experience in staging and follow-up. Klin Padiatr 217:327–333

    Article  CAS  PubMed  Google Scholar 

  59. Mody RJ, Bui C, Hutchinson RJ et al (2007) Comparison of 18F-fluorodeoxyglucose PET with Ga-67 scintigraphy and conventional imaging modalities in pediatric lymphoma. Leuk Lymphoma 48:699–707

    Article  CAS  PubMed  Google Scholar 

  60. Edeline V, Bonardel G, Brisse H et al (2007) Prospective study of 18F-FDG PET in pediatric mediastinal lymphoma: a single center experience. Leuk Lymphoma 48(4):823–826

    Article  PubMed  Google Scholar 

  61. Bakhshi S, Jain P, Anand M, Padmanjali K, Kumar R, Arya LS (2004) Non Hodgkin’s lymphoma seven years following remission of acute lymphoblastic leukemia. Indian J Pediatr 71(5):431–432

    Article  PubMed  Google Scholar 

  62. Karantanis D, Durski JM, Lowe VJ et al (2010) 18F-FDG and PET/ CT in Burkitt’s lymphoma. Eur J Radiol 75:68–73

    Article  Google Scholar 

  63. Riad R, Omar W, Sidhom I et al (2010) False-positive F-18 FDG uptake in PET/CT studies in pediatric patients with abdominal Burkitt’s lymphoma. Nucl Med Commun 31:232–238

    Article  PubMed  Google Scholar 

  64. Andre N, Fabre A, Colavolpe C, Jacob T, Gaudart J, Coze C, Paris M, Gentet JC, Guedj E, Michel G, Mundler O (2008) FDG PET and evaluation of post therapeutic residual tumors in pediatric oncology: preliminary experience. J Pediatr Hematol Oncol 30:343–346

    Article  PubMed  Google Scholar 

  65. Yamane T, Daimaru O, Ito S et al (2004) Decreased 18FFDGuptake 1 day after initiation of chemotherapy for malignant lymphomas. J Nucl Med 45(11):1838–1842

    PubMed  Google Scholar 

  66. Stauss J, Franzius C, Pfluger T et al (2008) Guidelines for 18F-FDG PET and PET-CT imaging in paediatric oncology. Eur J Nucl Med Mol Imaging 35:1581–1588. doi:10.1007/s00259-008-0826-x

    Article  CAS  PubMed  Google Scholar 

  67. Parysow O, Mollerach AM, Jager V et al (2007) Low-dose oral propranolol could reduce brown adipose tissue F-18 FDG uptake in patients undergoing PET scans. Clin Nucl Med 32:351–357

    Article  PubMed  Google Scholar 

  68. Söderlund V, Larsson SA, Jacobsson H (2007) Reduction of FDG uptake in brown adipose tissue in clinical patients by a single dose of propranolol. Eur J Nucl Med Mol Imaging 34:1018–1022

    Article  PubMed  Google Scholar 

  69. Gelfand M, O’Hara S, Curtwright L et al (2005) Pre-medication to block [(18)F]FDG uptake in the brown adipose tissue of pediatric and adolescent patients. Pediatr Radiol 35:984–990

    Article  PubMed  Google Scholar 

  70. Lassmann M, Biassoni L, Monsieurs M et al; EANM Dosimetry and Paediatrics Committees. The new EANM paediatric dosage card: additional notes with respect to F-18. Eur J Nucl Med Mol Imaging. 2008;35(9):1666–8.

    Google Scholar 

  71. Holm S, Borgwardt L, Loft A, Graff J, Law I, Hojgaard L (2007) Paediatric doses-a critical appraisal of the EANM paediatric dosage card. Eur J Nucl Med Mol Imaging 34:1713–1718

    Article  PubMed  Google Scholar 

  72. Paterson A, Frush DP, Donnelly LF (2001) Helical CT of the body: are settings adjusted for pediatric patients. Am J Roentgenol 176(2):297–301

    Article  CAS  Google Scholar 

  73. Arch ME, Frush DP (2008) Pediatric body MDCT: a 5-year follow-up survey of scanning parameters used by pediatric radiologists. AJR Am J Roentgenol 191(2):611–617

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Egesta Lopci MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lopci, E., Piccardo, A. (2016). Lymphoma. In: Mansi, L., Lopci, E., Cuccurullo, V., Chiti, A. (eds) Clinical Nuclear Medicine in Pediatrics. Springer, Cham. https://doi.org/10.1007/978-3-319-21371-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21371-2_12

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21370-5

  • Online ISBN: 978-3-319-21371-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics