Skip to main content

Multiscale Modelling of In Situ Oil Sands Upgrading with Molybdenum Carbide Nanoparticles

  • Chapter
  • First Online:
Quantum Modeling of Complex Molecular Systems

Abstract

This chapter presents multi-scale models of the reactions that occur in the in situ oil sands upgrading process. Its focus is on the various modelling tools and their applications to the benzene hydrogenation reactions catalyzed by molybdenum carbide nanoparticles. As the reaction mechanism of benzene hydrogenation on molybdenum carbide is not clear, we start with density functional theory (DFT) studies to elucidate the reaction mechanism, using both periodic and cluster models. Benzene hydrogenation on molybdenum carbide follows the Langmuir-Hinshelwood mechanism, with the six-member ring tilting up gradually. A tight-binding quantum chemical molecular dynamics (TB-QCMD) method is used to track the physical motion of the atoms in the reaction processes of C6H6 on a Mo-terminated α-Mo2C (0001) surface. The approximate DFT method, density functional tight-binding (DFTB), was parameterized to allow the quantum mechanical treatment of nanoscale systems. With the nudged elastic band method, the potential energy profiles of benzene hydrogenation on molybdenum carbide nanoparticles have been obtained. Finally a force field was brought in to describe the solvent environment in the system, leading to a multiscale quantum mechanical/molecular mechanical (QM/MM) model. This study suggests that entropy and the environment play important roles in heterogeneous reactions catalyzed by molybdenum carbide nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADFT:

Auxiliary density functional theory

DFT:

Density functional theory

DFTB:

Density functional tight-binding

HDN:

Hydrodenitrogenation

HDS:

Hydrodesulphurization

HRTEM:

High-resolution transmission electron microscopy

KS:

Kohn-Sham

L-H:

Langmuir-Hinshelwood

LCGTO:

Linear combination of Gaussian type orbitals

MCNPs:

Molybdenum carbide nanoparticles

MD:

Molecular dynamics

MEP:

Minimum energy path

PAH:

Polyaromatic hydrocarbons

PAW:

Projector augmented wave

PMF:

Potential of mean force

QM/MM:

Quantum mechanics/molecular mechanics

SAGD:

Steam-assisted gravity drainage

SCC:

Self-consistent-charge

TB:

Tight-binding

TB-QC:

Tight-binding quantum chemistry

TB-QCMD:

Tight-binding quantum chemical molecular dynamics

TPR-MS:

Temperature-programmed reaction-mass spectrometry

TS:

Transition state

UD:

Ultra-dispersed

WHAM:

Weighted-histogram analysis method

References

  1. Alboudwarej H, Felix J, Taylor S, Badry R, Bremner C, Brough B, Skeates C, Baker A, Palmer D, Pattison K, Beshry M, Krawchuk P, Brown G, Calvo R, Triana JAC, Hathcock R, Koerner K, Hughes T, Kundu D, Cardenas JL, West C (2006) Highlighting heavy oil. Oilfield Rev. Schlumberger. https://www.slb.com/~/media/Files/resources/oilfield_review/ors06/sum06/heavy_oil.pdf

  2. Sanati M, Harrysson B, Faghihi M, Gevert B, Jaras S (2002) Catalytic hydrodearomatization. In: Spivey JJ (ed) Catalysis: Volume 16, vol 16. The Royal Society of Chemistry, pp 1–42. doi:10.1039/9781847553287-00001

  3. Glassman D, Wucker M, Isaacman T, Champilou C (2011) The water-energy nexus, adding water to the energy sagenda. http://www.worldpolicy.org/sites/default/files/policy_papers/THE%20WATER-ENERGY%20NEXUS_0.pdf

  4. Pereira-Almao P (2012) In-situ upgrading of bitumen and heavy oils via nanocatalysis. Can J Chem Eng 90(2):320–329. doi:10.1002/cjce.21646

    Article  Google Scholar 

  5. Frauwallner ML, Lopez-Linares F, Lara-Romero J, Scott CE, Ali V, Hernandez E, Pereira-Almao P (2011) Toluene hydrogenation at low temperature using a molybdenum carbide catalyst. Appl Catal A-Gen 394(1–2):62–70. doi:10.1016/j.apcata.2010.12.024

    Article  CAS  Google Scholar 

  6. Survery USG (2012) U.S. Mineral commodity summaries 2012.107 http://minerals.usgs.gov/minerals/pubs/mcs/2012/mcs2012.pdf

  7. Scott C (2013) In-situ oil sand upgrading with nanocatalysts. Pers Commun

    Google Scholar 

  8. Stanislaus A, Cooper BH (1994) Aromatic hydrogenation catalysis: a review. Catal Rev 36(1):75–123. doi:10.1080/01614949408013921

    Article  CAS  Google Scholar 

  9. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136 (3B):B864–B871. doi:http://dx.doi.org/10.1103/PhysRev.136.B864

  10. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140(4A):A1133–A1138. doi:10.1103/PhysRev.140.A1133

    Article  Google Scholar 

  11. Köster AM, Geudtner G, Calaminici P, Casida ME, Dominguez VD, Flores-Moreno R, Goursot A, Heine T, Ipatov A, Janetzko F, Del Campo JM, Revelevs JU, Vela A, Zuniga B, Salahub DR (2011) deMon2 k. The deMon developers, CINVESTAV, Mexico. www.demon-software.com

  12. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50(24):17953–17979. doi:10.1103/PhysRevB.50.17953

    Article  Google Scholar 

  13. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169–11186. doi:10.1103/PhysRevB.54.11169

    Article  CAS  Google Scholar 

  14. Calaminici P, Domínguez-Soria V-D, Flores-Moreno R, Gamboa-Martínez G, Geudtner G, Goursot A, Salahub D, Köster A (2012) Auxiliary density functional theory: from molecules to nanostructures. In: Leszczynski J (ed) Handbook of computational chemistry. Springer Netherlands, pp 573–610. doi:10.1007/978-94-007-0711-5_16

  15. Dunlap BI, Connolly JWD, Sabin JR (1979) On first-row diatomic molecules and local density models. J Chem Phys 71(12):4993–4999. doi:10.1063/1.438313

    Article  CAS  Google Scholar 

  16. Köster AM, Reveles JU, del Campo JM (2004) Calculation of exchange-correlation potentials with auxiliary function densities. J Chem Phys 121(8):3417–3424. doi:10.1063/1.1771638

    Article  Google Scholar 

  17. Köster AM (2003) Hermite Gaussian auxiliary functions for the variational fitting of the Coulomb potential in density functional methods. J Chem Phys 118(22):9943–9951. doi:10.1063/1.1571519

    Article  Google Scholar 

  18. Köster AM, del Campo JM, Janetzko F, Zuniga-Gutierrez B (2009) A MinMax self-consistent-field approach for auxiliary density functional theory. J Chem Phys 130(11):114106. doi:10.1063/1.3080618

    Article  Google Scholar 

  19. Porezag D, Frauenheim T, Köhler T, Seifert G, Kaschner R (1995) Construction of tight-binding-like potentials on the basis of density-functional theory: Application to carbon. Phys Rev B 51(19):12947–12957. doi:10.1103/PhysRevB.51.12947

    Article  CAS  Google Scholar 

  20. Oliveira AF, Seifert G, Heine T, Duarte HA (2009) Density-functional based tight-binding: an approximate DFT method. J Braz Chem Soc 20:1193–1205. doi:10.1590/S0103-50532009000700002

    Article  CAS  Google Scholar 

  21. Elstner M, Porezag D, Jungnickel G, Elsner J, Haugk M, Frauenheim T, Suhai S, Seifert G (1998) Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys Rev B 58(11):7260–7268. doi:10.1103/PhysRevB.58.7260

    Article  CAS  Google Scholar 

  22. Zhechkov L, Heine T, Patchkovskii S, Seifert G, Duarte HA (2005) An efficient a posteriori treatment for dispersion interaction in density-functional-based tight binding. J Chem Theory Comput 1(5):841–847. doi:10.1021/ct050065y

    Article  CAS  Google Scholar 

  23. Cui Q, Elstner M, Kaxiras E, Frauenheim T, Karplus M (2000) A QM/MM implementation of the self-consistent charge density functional tight binding (SCC-DFTB) method. J Phys Chem B 105(2):569–585. doi:10.1021/jp0029109

    Article  Google Scholar 

  24. Warshel A, Levitt M (1976) Theoretical studies of enzymic reactions: Dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. J Mol Biol 103(2):227–249. doi:10.1016/0022-2836(76)90311-9

    Article  CAS  Google Scholar 

  25. Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E, Guvench O, Lopes P, Vorobyov I, Mackerell AD (2010) CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 31(4):671–690. doi:10.1002/jcc.21367

    CAS  Google Scholar 

  26. Torrie GM, Valleau JP (1974) Monte Carlo free energy estimates using non-Boltzmann sampling: Application to the sub-critical Lennard-Jones fluid. Chem Phys Lett 28(4):578–581. doi:10.1016/0009-2614(74)80109-0

    Article  CAS  Google Scholar 

  27. Kästner J (2011) Umbrella sampling. Wiley Interdiscip Rev: Comput Mol Sci 1(6):932–942. doi:10.1002/wcms.66

    Google Scholar 

  28. Roux B (1995) The calculation of the potential of mean force using computer simulations. Comput Phys Commun 91(1–3):275–282. doi:10.1016/0010-4655(95)00053-I

    Article  CAS  Google Scholar 

  29. Kumar S, Rosenberg JM, Bouzida D, Swendsen RH, Kollman PA (1992) The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J Comput Chem 13(8):1011–1021. doi:10.1002/jcc.540130812

    Article  CAS  Google Scholar 

  30. Selvam P, Tsuboi H, Koyama M, Kubo M, Miyamoto A (2005) Tight-binding quantum chemical molecular dynamics method: a novel approach to the understanding and design of new materials and catalysts. Catal Today 100(1–2):11–25. doi:10.1016/j.cattod.2004.12.020

    Article  CAS  Google Scholar 

  31. St. Clair TP, Oyama ST, Cox DF (2002) Adsorption and reaction of thiophene on α-Mo2C(0001). Surf Sci 511(1–3):294–302. doi:10.1016/s0039-6028(02)01505-4

    Article  CAS  Google Scholar 

  32. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27(15):1787–1799. doi:10.1002/jcc.20495

    Article  CAS  Google Scholar 

  33. Rocha AS, Rocha AB, da Silva VT (2010) Benzene adsorption on Mo2C: a theoretical and experimental study. Appl Catal A-Gen 379(1–2):54–60. doi:10.1016/j.apcata.2010.02.032

    Article  CAS  Google Scholar 

  34. Rocha ÂS, Silva VLTd, Leitão AA, Herbst MH, Faro-Jr AC (2004) Low temperature low pressure benzene hydrogenation on Y zeolite-supported carbided molybdenum. Catal Today 98(1–2):281–288. doi:10.1016/j.cattod.2004.07.041

    Article  CAS  Google Scholar 

  35. Lee JS, Yeom MH, Park KY, Nam I-S, Chung JS, Kim YG, Moon SH (1991) Preparation and benzene hydrogenation activity of supported molybdenum carbide catalysts. J Catal 128(1):126–136. doi:10.1016/0021-9517(91)90072-c

    Article  CAS  Google Scholar 

  36. Frauwallner ML (2009) Catalyst development for hydrogenation at low temperature, pressure, and hydrocarbon space velocity. M.Sc. thesis, University of Calgary, Calgary

    Google Scholar 

  37. Guzmán HJ, Xu W, Stacchiola D, Vitale G, Scott CE, Rodríguez JA, Pereira-Almao P (2013) In situ time-resolved X-ray diffraction study of the synthesis of Mo2C with different carburization agents. Can J Chem 91(7):573–582. doi:10.1139/cjc-2012-0516

    Article  Google Scholar 

  38. Ardakani SJ, Liu XB, Smith KJ (2007) Hydrogenation and ring opening of naphthalene on bulk and supported Mo2C catalysts. Appl Catal A-Gen 324:9–19. doi:10.1016/j.apcata.2007.02.048

    Article  CAS  Google Scholar 

  39. Pang M, Liu CY, Xia W, Muhler M, Liang CH (2012) Activated carbon supported molybdenum carbides as cheap and highly efficient catalyst in the selective hydrogenation of naphthalene to tetralin. Green Chem 14(5):1272–1276. doi:10.1039/c2gc35177c

    Article  CAS  Google Scholar 

  40. Oliveira RR Jr, Rocha AS, Teixeira da Silva V, Rocha AB (2014) Investigation of hydrogen occlusion by molybdenum carbide. Appl Catal A 469:139–145. doi:10.1016/j.apcata.2013.09.031

    Article  CAS  Google Scholar 

  41. Liu X, Tkalych A, Zhou B, Köster AM, Salahub DR (2013) Adsorption of Hexacyclic C6H6, C6H8, C6H10, and C6H12 on a Mo-Terminated α-Mo2C (0001) surface. J Phys Chem C117(14):7069–7080. doi:10.1021/jp312204u

    Google Scholar 

  42. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868. doi:10.1103/PhysRevLett.77.3865

    Article  CAS  Google Scholar 

  43. Calaminici P, Janetzko F, Koster AM, Mejia-Olvera R, Zuniga-Gutierrez B (2007) Density functional theory optimized basis sets for gradient corrected functionals: 3d transition metal systems. J Chem Phys 126 (4). doi:10.1063/1.2431643

  44. Eng J, Bent BE, Frühberger B, Chen JG (1998) Modifying surface reactivities by a carbide overlayer: a vibrational study of the reaction mechanisms of cyclohexene and 1,3-Cyclohexadiene on Mo(110) and (4 × 4)-C/Mo(110) Surfaces. Langmuir 14(6):1301–1311. doi:10.1021/la970709s

    Article  CAS  Google Scholar 

  45. MarquezAlvarez C, Claridge JB, York APE, Sloan J, Green MLH (1997) Benzene hydrogenation over transition metal carbides, in Studies in surface science and catalysis, vol 106. Hydrotreatment and hydrocracking of oil fractions

    Google Scholar 

  46. Choi J-S, Krafft J-M, Krzton A, Djéga-Mariadassou G (2002) Study of residual oxygen species over molybdenum carbide prepared during in situ DRIFTS experiments. Catal Lett 81(3):175–180. doi:10.1023/a:1016568804706

    Article  CAS  Google Scholar 

  47. Zhang J, Wu WC (2008) Hydrogenation of benzene over Mo2C/Al2O3 catalyst. China Petrol Process Petrochem Technol 4:41–43

    Google Scholar 

  48. Ahmed F, Liu X, Miyamoto A, Salahub DR (2015) Adsorption and hydrogenation of C6H6 on α-Mo2C (0001): a quantum chemical molecular dynamics study. unpublished

    Google Scholar 

  49. Hyeon TH, Fang MM, Suslick KS (1996) Nanostructured molybdenum carbide: Sonochemical synthesis and catalytic properties. J Am Chem Soc 118(23):5492–5493. doi:10.1021/ja9538187

    Article  CAS  Google Scholar 

  50. Saeys M, Reyniers MF, Neurock M, Marin GB (2005) Ab initio reaction path analysis of benzene hydrogenation to cyclohexane on Pt(111). J Phys Chem B 109(6):2064–2073. doi:10.1021/jp049421j

    Article  CAS  Google Scholar 

  51. Fan C, Zhu Y-A, Zhou X-G, Liu Z-P (2011) Catalytic hydrogenation of benzene to cyclohexene on Ru(0001) from density functional theory investigations. Catal Today 160(1):234–241. doi:10.1016/j.cattod.2010.03.075

    Article  CAS  Google Scholar 

  52. Liu X (2015) In-situ heavy oil upgrading with molybdenum carbide nanoparticles: a multiscale modeling approach. Ph.D. thesis, University of Calgary, Calgary

    Google Scholar 

  53. Liu X, Salahub DR (2015) Molybdenum carbide nanocatalysts at work in the in-situ environment: a DFTB and QM(DFTB)/MM Study. J Am Chem Soc 137(12):4249–4259. doi: 10.1021/jacs.5b01494

  54. Zhou B, Liu X, Cuervo J, Salahub DR (2012) Density functional study of benzene adsorption on the α-Mo2C(0001) surface. Struct Chem 23(5):1459–1466. doi:10.1007/s11224-012-0064-5

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis R. Salahub .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Liu, X., Zhou, B., Ahmed, F., Tkalych, A., Miyamoto, A., Salahub, D.R. (2015). Multiscale Modelling of In Situ Oil Sands Upgrading with Molybdenum Carbide Nanoparticles. In: Rivail, JL., Ruiz-Lopez, M., Assfeld, X. (eds) Quantum Modeling of Complex Molecular Systems. Challenges and Advances in Computational Chemistry and Physics, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-21626-3_16

Download citation

Publish with us

Policies and ethics