Skip to main content

Abstract

In this paper, a new methodology for reconstructing spatially varying random material properties is presented by combining stochastic finite element (SFE) models with Self-Optimizing Inverse Method (Self-OPTIM). The Self-OPTIM can identify model parameters based on partial boundary force and displacement data from experimental tests. Statistical information (i.e. spatial mean, variance, correlation length and Gaussian normal random variables) of spatially varying random fields (RFs) are parameterized by Karhunen-Loève (KL) expansion method and integrated into SFE models. In addition, a new software framework is also presented that can simultaneously utilize any number of remote computers in a network domain for the Self-OPTIM simulation. This can result in a significant decrease of computational times required for the optimization task. Two important issues in the inverse reconstruction problem are addressed in this paper: (1) effects of the number of internal measurements and (2) non-uniform reaction forces along the boundary on the reconstruction accuracy. The proposed method is partially proven to offer new capabilities of reconstructing spatially inhomogeneous material properties and estimating their statistical parameters from incomplete experimental measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Mahnken, A comprehensive study of a multiplicative elastoplasticity model coupled to damage including parameter identification. Comput. Struct. 74(2), 179–200 (2000)

    Article  Google Scholar 

  2. R. Mahnken, An inverse finite-element algorithm for parameter identification of thermoelastic damage models. Int. J. Numer. Methods Eng. 48(7), 1015–1036 (2000)

    Article  MATH  Google Scholar 

  3. R. Mahnken, Identification of material parameters for constitutive equations. Encyclopedia Comput. Mech. 2, 637–655 (2004)

    Google Scholar 

  4. R. Mahnken, M. Johansson, K. Runesson, Parameter estimation for a viscoplastic damage model using a gradient-based optimization algorithm. Eng. Comput. 15(6–7), 925 (1998)

    Article  MATH  Google Scholar 

  5. R. Mahnken, E. Stein, A unified approach for parameter identification of inelastic material models in the frame of the finite element method. Comput. Methods Appl. Mech. Eng. 136(3-4), 225–258 (1996)

    Article  MATH  Google Scholar 

  6. A.F. Saleeb, A.S. Gendy, T.E. Wilt, Parameter-estimation algorithms for characterizing a class of isotropic and anisotropic viscoplastic material models. Mech. Time-Depend. Mater. 6(4), 323–362 (2002)

    Article  Google Scholar 

  7. A.F. Saleeb et al., Interactive software for material parameter characterization of advanced engineering constitutive models. Adv. Eng. Softw. 35(6), 383–398 (2004)

    Article  Google Scholar 

  8. A.F. Saleeb et al., Effective strategy for automated characterization in complex viscoelastoplastic and damage modeling for isotropic/anisotropic aerospace materials (vol 15, pg 84, 2002). J. Aerosp. Eng. 15(4), 166–166 (2002)

    Article  Google Scholar 

  9. A.F. Saleeb et al., An anisotropic viscoelastoplastic model for composites—sensitivity analysis and parameter estimation. Composites Part B Engineering 34(1), 21–39 (2003)

    Article  Google Scholar 

  10. S. Gerlach, A. Matzenmiller, On parameter identification for material and microstructural properties. GAMM-Mitteilungen 30(2), 481–505 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. A. Matzenmiller, S. Gerlach, Parameter identification of elastic interphase properties in fiber composites. Composites Part B Engineering 37(2-3), 117–126 (2006)

    Article  Google Scholar 

  12. P. Akerstrom, B. Wikman, M. Oldenburg, Material parameter estimation for boron steel from simultaneous cooling and compression experiments. Model. Simul. Mater. Sci. Eng. 13(8), 1291–1308 (2005)

    Article  Google Scholar 

  13. D.A. Castello et al., Constitutive parameter estimation of a viscoelastic model with internal variables. Mech. Syst. Signal Process 22(8), 1840–1857 (2008)

    Article  Google Scholar 

  14. E. Pagnacco, et al. Inverse strategy from displacement field measurement and distributed forces using FEA. SEM Annual Conference and Exposition on Experimental and Applied Mechanics, Poland, 2005

    Google Scholar 

  15. A. Constantinescu, On the identification of elastic moduli from displacement-force boundary measurements. Inverse Prob. Eng. 1(4), 293–313 (1995)

    Article  Google Scholar 

  16. G. Geymonat, S. Pagano, Identification of mechanical properties by displacement field measurement: a variational approach. Meccanica 38(5), 535–545 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  17. M. Grediac, F. Pierron, Applying the virtual fields method to the identification of elasto-plastic constitutive parameters. Int. J. Plast. 22(4), 602–627 (2006)

    Article  MATH  Google Scholar 

  18. M. Grediac et al., The virtual fields method for extracting constitutive parameters from full-field measurements: a review. Strain 42(4), 233–253 (2006)

    Article  Google Scholar 

  19. D. Claire, F. Hild, S. Roux, A finite element formulation to identify damage fields: the equilibrium gap method. Int. J. Numer. Methods Eng. 61(2), 189–208 (2004)

    Article  MATH  Google Scholar 

  20. A. Ben Abda, H. Ben Ameur, M. Jaoua, Identification of 2D cracks by elastic boundary measurements. Inverse Prob. 15(1), 67–77 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  21. G.J. Yun, S. Shang, A self-optimizing inverse analysis method for estimation of cyclic elasto-plasticity model parameters. Int. J Plast. 27, 576–595 (2011)

    Article  MATH  Google Scholar 

  22. S. Shang, G.J. Yun, Identification of elasto-plastic constitutive parameters by self-optimizing inverse method: experimental verifications. Comput. Mater. Continua 635(1), 1–18 (2012)

    Google Scholar 

  23. M.R. Rahimi, G.J. Yun, S. Shen, Inverse estimation of dynamic stiffness of highway bridge embankment from earthquake records. J. Bridge Eng. 19(SPECIAL ISSUE: Recent Advances in Seismic Design, Analysis, and Protection of Highway Bridges): p. A4014005 (2014)

    Google Scholar 

  24. M. Wolff, M. Böhm, Zu einem neuen Ansatz zur Parameterbestimmung in der Mechanik der Festkörper, (University of Bremen, Bremen, 2013)

    Google Scholar 

  25. F. Latourte et al., Elastoplastic behavior identification for heterogeneous loadings and materials. Exp. Mech. 48(4), 435–449 (2008)

    Article  Google Scholar 

  26. A. Teughels, J. Maeck, G. De Roeck, Damage assessment by FE model updating using damage functions. Comput. Struct. 80(25), 1869–1879 (2002)

    Article  Google Scholar 

  27. A. Teughels, G. De Roeck, Structural damage identification of the highway bridge Z24 by FE model updating. J. Sound Vib. 278(3), 589–610 (2004)

    Article  Google Scholar 

  28. M.M.A. Wahab, G. De Roeck, B. Peeters, Parameterization of damage in reinforced concrete structures using model updating. J. Sound Vib. 228(4), 717–730 (1999)

    Article  Google Scholar 

  29. S. Adhikari, M.I. Friswell, Distributed parameter model updating using the karhunen-loeve expansion. Mech. Syst. Signal Process 24(2), 326–339 (2010)

    Article  Google Scholar 

  30. S. Shang, Stochastic material characterization of heterogeneous media with randomly distributed material properties. Department of Civil Engineering 2012, The University of Akron: Doctoral Dissertation

    Google Scholar 

  31. G.J. Yun, L. Zhao, E. Iarve, Probabilistic mesh-independent discrete damage analyses of laminate composites. Comp. Sci. Tech. (2015)

    Google Scholar 

  32. S. Shang, G.J. Yun, Stochastic material characterization for spatially varying random macroscopic material properties by stochastic self-optimizng inverse method. Probab. Eng. Mech. (2014)

    Google Scholar 

  33. S. Shang, G.J. Yun, Stochastic finite element with material uncertainties: implementation in a general-purpose simulation program. Finite Elem. Anal. Des. 64, 65–78 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  34. X.S. Yang, Firefly algorithms for multimodal optimization. Stochastic Algorithms Foundations Appl. Proc. 5792, 169–178 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunjin J. Yun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Weaver, J.M., Yun, G.J. (2016). Reconstruction of Spatially Varying Random Material Properties by Self-Optimizing Inverse Method. In: Bossuyt, S., Schajer, G., Carpinteri, A. (eds) Residual Stress, Thermomechanics & Infrared Imaging, Hybrid Techniques and Inverse Problems, Volume 9. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-21765-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21765-9_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21764-2

  • Online ISBN: 978-3-319-21765-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics