Skip to main content

In-Vivo Models of Blast Injury

  • Chapter
  • First Online:
Blast Injury Science and Engineering
  • 893 Accesses

Abstract

Over the years several in-vivo injury models have been developed to study the effects of blast injuries to experimental animals, in order to identify the injury mechanisms involved in the pathobiology of blast injury. This review provides an overview of the most commonly used blast injury models and the local and systemic changes induced in a wide range of tissues following blast.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nguyen TTN, Wilgeroth JM, Proud WG. Controlling blast wave generation in a shock tube for biological applications. In: 18th APS-SCCM and 24th AIRAPT, Seattle/Washington, DC.

    Google Scholar 

  2. Cernak I, et al. The pathobiology of blast injuries and blast-induced neurotrauma as identified using a new experimental model of injury in mice. Neurobiol Dis. 2011;41(2):538–51.

    Article  PubMed  Google Scholar 

  3. Long JB, et al. Blast overpressure in rats: recreating a battlefield injury in the laboratory. J Neurotrauma. 2009;26(6):827–40.

    Article  PubMed  Google Scholar 

  4. Goldstein LE, et al. Chronic traumatic encephalopathy in blast-exposed military veterans and a blast neurotrauma mouse model. Sci Transl Med. 2012;4:134ra60.

    Google Scholar 

  5. Svetlov S, et al. Morphological and biochemical signatures of brain injury following head-directed controlled blast overpressure impact. J Neurotrauma. 2009;26(8):A75.

    Google Scholar 

  6. Chavko M, Prusaczyk WK, McCarron RM. Lung injury and recovery after exposure to blast overpressure. J Trauma. 2006;61(4):933–42.

    Article  PubMed  Google Scholar 

  7. Risling M, et al. Experimental studies on mechanisms of blast induced brain injuries. J Neurotrauma. 2009;26(8):A74.

    Google Scholar 

  8. Risling M, Davidsson J. Experimental animal models for studies on the mechanisms of blast-induced neurotrauma. Front Neurol. 2012;3(30).

    Google Scholar 

  9. Chandra N, et al. Evolution of blast wave profiles in simulated air blasts: experiment and computational modeling. Shock Waves. 2012;22(5):403–15.

    Article  Google Scholar 

  10. Skotak M, et al. Rat injury model under controlled field-relevant primary blast conditions: acute response to a wide range of peak overpressures 7. J Neurotrauma. 2013;30(13):1147–60.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mohan K, et al. Retinal ganglion cell damage in an experimental rodent model of blast-mediated traumatic brain injury. Invest Ophthalmol Vis Sci. 2013;54(5):3440–50.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Cernak I. Animal models of head trauma. NeuroRx J Am Soc Exp Neurother. 2005;2(3):410–22.

    Google Scholar 

  13. Clemedson CJ, Jonsson A. Effects of frequency content in complex air shock-waves on lung injuries in rabbits. Aviat Space Environ Med. 1976;47(11):1143–52.

    Google Scholar 

  14. Clemedson CJ. Shock wave transmission to the central nervous system. Acta Physiol Scand. 1956;37(2–3):204–14.

    Article  CAS  PubMed  Google Scholar 

  15. Bauman RA, et al. An introductory characterization of a combat-casualty-care relevant swine model of closed head injury resulting from exposure to explosive blast. J Neurotrauma. 2009;26(6):841–60.

    Article  PubMed  Google Scholar 

  16. Risling M, et al. Mechanisms of blast induced brain injuries, experimental studies in rats. Neuroimage. 2011;54:S89–97.

    Article  PubMed  Google Scholar 

  17. Saljo A, et al. Mechanisms and pathophysiology of the low-level blast brain injury in animal models. Neuroimage. 2011;54:S83–8.

    Article  PubMed  Google Scholar 

  18. Bass CR, et al. Brain injuries from blast. Ann Biomed Eng. 2012;40(1):185–202.

    Article  PubMed  Google Scholar 

  19. Cheng JM, et al. Development of a rat model for studying blast-induced traumatic brain injury. J Neurol Sci. 2010;294(1–2):23–8.

    Article  PubMed  Google Scholar 

  20. Rubovitch V, et al. A mouse model of blast-induced mild traumatic brain injury. Exp Neurol. 2011;232(2):280–9.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kuehn R, et al. Rodent model of direct cranial blast injury. J Neurotrauma. 2011;28(10):2155–69.

    Article  PubMed  Google Scholar 

  22. Ogura M, et al. In vivo targeted gene transfer in skin by the use of laser-induced stress waves. Lasers Surg Med. 2004;34(3):242–8.

    Article  PubMed  Google Scholar 

  23. Hatano B, et al. Traumatic brain injury caused by laser-induced shock wave in rats: a novel laboratory model for studying blast-induced traumatic brain injury. Proc SPIE. 2011;7897:78971V.

    Google Scholar 

  24. Satoh Y, et al. Pulmonary blast injury in mice: a novel model for studying blast injury in the laboratory using laser-induced stress waves. Lasers Surg Med. 2010;42(4):313–8.

    Article  PubMed  Google Scholar 

  25. Panzer MB, Wood GW, Bass CR. Scaling in neurotrauma: how do we apply animal experiments to people? Exp Neurol. 2014;261:120–6.

    Article  PubMed  Google Scholar 

  26. DePalma RG, et al. Current concepts: blast injuries. N Engl J Med. 2005;352(13):1335–42.

    Article  CAS  PubMed  Google Scholar 

  27. Crockard HA, et al. An experimental cerebral missile injury model in primates. J Neurosurg. 1977;46:776–83.

    Article  CAS  PubMed  Google Scholar 

  28. Finnie JW. Pathology of experimental traumatic craniocerebral missile injury. J Comp Pathol. 1993;108:93–101.

    Article  CAS  PubMed  Google Scholar 

  29. Suneson A, Hansson HA, Seeman T. Peripheral high-energy missile hits cause pressure changes and damage to the nervous-system – experimental studies on pigs. J Trauma. 1987;27(7):782–9.

    Article  CAS  PubMed  Google Scholar 

  30. Carey ME, et al. Experimental missile wound to the brain. J Neurosurg. 1989;71(5):754–64.

    Article  CAS  PubMed  Google Scholar 

  31. Tan YH, et al. A gross and microscopic study of cerebral injuries accompanying maxillofacial high-velocity projectile wounding in dogs. J Oral Maxillofac Surg. 1998;56(3):345–8.

    Article  CAS  PubMed  Google Scholar 

  32. Plantman S, Davidsson J, Risling M. Characterization of a novel model for penetrating brain injury. J Neurotrauma. 2009;26(8):A86.

    Google Scholar 

  33. Proctor JL, et al. Rat model of brain injury caused by under-vehicle blast-induced hyperacceleration. J Trauma Acute Care Surg. 2014;77:S83–7.

    Article  PubMed  Google Scholar 

  34. Elder GA, et al. Blast-induced mild traumatic brain injury. Psychiatr Clin North Am. 2010;33(4):757–81.

    Article  PubMed  Google Scholar 

  35. Courtney MW, Courtney AC. Working toward exposure thresholds for blast-induced traumatic brain injury: thoracic and acceleration mechanisms. Neuroimage. 2011;54:S55–61.

    Article  PubMed  Google Scholar 

  36. Phillips YY, Richmond DR. Primary blast injury and basic research: a brief history. In: Textbook of military medicine, Part I, Conventional warfare: ballistic, blast and burn injuries. Washington, DC: Office of the Surgeon General of the US Army; 1990.

    Google Scholar 

  37. Andersen P, Loken S. Lung damage and lethality by underwater detonations. Acta Physiol Scand. 1968;72(1–2):6–14.

    Article  CAS  PubMed  Google Scholar 

  38. Tannous O, et al. Heterotopic ossification after extremity blast amputation in a Sprague–Dawley rat animal model. J Orthop Trauma. 2011;25(8):506–10.

    Article  PubMed  Google Scholar 

  39. de Lanerolle NC, et al. Characteristics of an explosive blast-induced brain injury in an experimental model. J Neuropathol Exp Neurol. 2011;70(11):1046–57.

    Article  PubMed  Google Scholar 

  40. Warden D. Military TBI during the Iraq and Afghanistan wars. J Head Trauma Rehabil. 2006;21(5):398–402.

    Article  PubMed  Google Scholar 

  41. Park E, et al. Electrophysiological white matter dysfunction and association with neurobehavioral deficits following low-level primary blast trauma. Neurobiol Dis. 2013;52:150–9.

    Article  CAS  PubMed  Google Scholar 

  42. Pun PBL, et al. Low level primary blast injury in rodent brain. Front Neurol. 2011;2:1–15.

    Google Scholar 

  43. Park E, et al. A model of low-level primary blast brain trauma results in cytoskeletal proteolysis and chronic functional impairment in the absence of lung barotrauma. J Neurotrauma. 2011;28(3):343–57.

    Article  PubMed  Google Scholar 

  44. Gao W, et al. Association between reduced expression of hippocampal glucocorticoid receptors and cognitive dysfunction in a rat model of traumatic brain injury due to lateral head acceleration. Neurosci Lett. 2013;533:50–4.

    Article  CAS  PubMed  Google Scholar 

  45. Ikonomovic MD, et al. Alzheimer’s pathology in human temporal cortex surgically excised after severe brain injury. Exp Neurol. 2004;190(1):192–203.

    Article  CAS  PubMed  Google Scholar 

  46. DeKosky ST, et al. Association of increased cortical soluble A beta(42) levels with diffuse plaques after severe brain injury in humans. Arch Neurol. 2007;64(4):541–4.

    Article  PubMed  Google Scholar 

  47. De Gasperi R, et al. Acute blast injury reduces brain abeta in two rodent species. Front Neurol. 2012;3(177):1–17.

    Google Scholar 

  48. Garman RH, et al. Blast exposure in rats with body shielding is characterized primarily by diffuse axonal injury. J Neurotrauma. 2011;28(6):947–59.

    Article  PubMed  Google Scholar 

  49. Lighthall JW. Controlled cortical impact: a new experimental brain injury model. J Neurotrauma. 1988;5(1):1–15.

    Article  CAS  PubMed  Google Scholar 

  50. Hall KD, Lifshitz J. Diffuse traumatic brain injury initially attenuates and later expands activation of the rat somatosensory whisker circuit concomitant with neuroplastic responses. Brain Res. 2010;1323:161–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Singleton RH, et al. Traumatically induced axotomy adjacent to the soma does not result in acute neuronal death. J Neurosci. 2002;22(3):791–802.

    CAS  PubMed  Google Scholar 

  52. Singleton RH, Povlishock JT. Diffuse brain injury-mediated neuronal somatic plasmalemmal wounding: a study of the effects of membrane disruption on neuronal reaction and fate. J Neurotrauma. 2003;20(10):1125.

    Google Scholar 

  53. Chavko M, Prusaczyk WK, McCarron RM. Protection against blast-induced mortality in rats by hemin. J Trauma. 2008;65(5):1140–5.

    Article  PubMed  Google Scholar 

  54. Koliatsos VE, et al. A mouse model of blast injury to brain: initial pathological, neuropathological, and behavioral characterization. J Neuropathol Exp Neurol. 2011;70(5):399–416.

    Article  PubMed  Google Scholar 

  55. Rafaels K, et al. Brain injury from primary blast. Brain Inj. 2012;26(4–5):745–6.

    Google Scholar 

  56. Cernak I, et al. Involvement of the central nervous system in the general response to pulmonary blast injury. J Trauma. 1996;40(3):S100–4.

    Article  CAS  PubMed  Google Scholar 

  57. Bhattacharjee Y. Neuroscience – shell shock revisited: solving the puzzle of blast trauma. Science. 2008;319(5862):406–8.

    Article  CAS  PubMed  Google Scholar 

  58. Ning JL, et al. Lung injury following lower extremity blast trauma in rats. J Trauma Acute Care Surg. 2012;73(6):1537–44.

    Article  PubMed  Google Scholar 

  59. Ning JL, et al. Transient regional hypothermia applied to a traumatic limb attenuates distant lung injury following blast limb trauma. Crit Care Med. 2014;42(1):E68–78.

    Article  PubMed  Google Scholar 

  60. Delius M, et al. Biological effects of shock-waves – lung hemorrhage by shock-waves in dogs – pressure-dependence. Ultrasound Med Biol. 1987;13(2):61–7.

    Article  CAS  PubMed  Google Scholar 

  61. Seitz DH, et al. Pulmonary contusion induces alveolar type 2 epithelial cell apoptosis: role of alveolar macrophages and neutrophils. Shock. 2008;30(5):537–44.

    Article  PubMed  Google Scholar 

  62. Sasser SM, et al. Blast lung injury. Prehosp Emerg Care. 2006;10(2):165–72.

    Article  PubMed  Google Scholar 

  63. Gorbunov NV, et al. Pro-inflammatory alterations and status of blood plasma iron in a model of blast-induced lung trauma. Int J Immunopathol Pharmacol. 2005;18(3):547–56.

    CAS  PubMed  Google Scholar 

  64. Rafaels KA, et al. Pulmonary injury risk assessment for long-duration blasts: a meta-analysis. J Trauma. 2010;69(2):368–74.

    Article  PubMed  Google Scholar 

  65. Bass CR, Rafaels KA, Salzar RS. Pulmonary injury risk assessment for short-duration blasts. J Trauma. 2008;65(3):604–15.

    Article  PubMed  Google Scholar 

  66. Chai JK, et al. Role of neutrophil elastase in lung injury induced by burn-blast combined injury in rats. Burns. 2013;39(4):745–53.

    Article  PubMed  Google Scholar 

  67. Chai JK, et al. A novel model of burn-blast combined injury and its phasic changes of blood coagulation in rats. Shock. 2013;40(4):297–302.

    Article  PubMed  Google Scholar 

  68. Elsayed NM. Toxicology of blast over-pressure. Toxicology. 1997;121(1):1–15.

    Article  CAS  PubMed  Google Scholar 

  69. Alfieri KA, Forsberg JA, Potter BK. Blast injuries and heterotopic ossification. Bone Joint Res. 2012;1(8):174–9.

    Article  PubMed Central  Google Scholar 

  70. Salisbury E, et al. Sensory nerve induced inflammation contributes to heterotopic ossification. J Cell Biochem. 2011;112(10):2748–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Apel PJ, et al. Effect of selective sensory denervation on fracture-healing an experimental study of rats. J Bone Joint Surg Am. 2009;91A(12):2886–95.

    Article  Google Scholar 

  72. Yano H, et al. Substance-P-induced augmentation of cutaneous vascular-permeability and granulocyte infiltration in mice is mast-cell dependent. J Clin Invest. 1989;84(4):1276–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Polfer EM, et al. The development of a rat model to investigate the formation of blast-related post-traumatic heterotopic ossification. Bone Joint J. 2015;97-B(4):572–6.

    Article  CAS  PubMed  Google Scholar 

  74. Qureshi AT, et al. Early characterization of blast-related heterotopic ossification in a rat model. Clin Orthop Relat Res. 2015;473(9):2831–9.

    Article  PubMed  Google Scholar 

  75. Patterson JH, Hamernik RP. Blast overpressure induced structural and functional changes in the auditory system. Toxicology. 1997;121(1):29–40.

    Article  CAS  PubMed  Google Scholar 

  76. Luo H, et al. Blast-induced tinnitus and spontaneous firing changes in the rat dorsal cochlear nucleus. J Neurosci Res. 2014;92(11):1466–77.

    Article  CAS  PubMed  Google Scholar 

  77. Mao JC, et al. Blast-induced tinnitus and hearing loss in rats: behavioral and imaging assays. J Neurotrauma. 2012;29(2):430–44.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Kurioka T, et al. Characteristics of laser-induced shock wave injury to the inner ear of rats. J Biomed Opt. 2014;19(12):125001.

    Article  PubMed  Google Scholar 

  79. Newman AJ, et al. Low-cost blast wave generator for studies of hearing loss and brain injury: blast wave effects in closed spaces. J Neurosci Methods. 2015;242:82–92.

    Article  PubMed  Google Scholar 

  80. Wu JA, et al. Study of protective effect on rat cochlear spiral ganglion after blast exposure by adenovirus-mediated human beta-nerve growth factor gene. Am J Otolaryngol. 2011;32(1):8–12.

    Article  CAS  PubMed  Google Scholar 

  81. Birch R, et al. Nerve injuries sustained during warfare part II: outcomes. J Bone Joint Surg Br. 2012;94B(4):529–35.

    Article  Google Scholar 

  82. Christensen AM, et al. Primary and secondary skeletal blast trauma. J Forensic Sci. 2012;57(1):6–11.

    Article  PubMed  Google Scholar 

  83. Claes L, et al. The effect of both a thoracic trauma and a soft-tissue trauma on fracture healing in a rat model. Acta Orthop. 2011;82(2):223–7.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Birch R, et al. Nerve injuries sustained during warfare part I – epidemiology. J Bone Joint Surg Br. 2012;94B(4):523–8.

    Article  Google Scholar 

  85. Suneson A, Seeman T. Pressure wave injuries to the nervous-system caused by high-energy missile extremity impact.1. Local and distant effects on the peripheral nervous-system – a light and electron-microscopic study on pigs. J Trauma. 1990;30(3):281–94.

    Article  CAS  PubMed  Google Scholar 

  86. Bellander BM, et al. Genetic regulation of microglia activation, complement expression, and neurodegeneration in a rat model of traumatic brain injury. Exp Brain Res. 2010;205(1):103–14.

    Article  CAS  PubMed  Google Scholar 

  87. Panzer MB, Bass CRD. Human results from animal models: scaling laws for blast neurotrauma. J Neurotrauma. 2012;29(10):A151.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theofano Eftaxiopoulou PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Eftaxiopoulou, T. (2016). In-Vivo Models of Blast Injury. In: Bull, A., Clasper, J., Mahoney, P. (eds) Blast Injury Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-21867-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21867-0_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21866-3

  • Online ISBN: 978-3-319-21867-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics