Skip to main content

Anaerobic Fungi and Their Potential for Biogas Production

  • Chapter
  • First Online:
Biogas Science and Technology

Abstract

Plant biomass is the largest reservoir of environmentally friendly renewable energy on earth. However, the complex and recalcitrant structure of these lignocellulose-rich substrates is a severe limitation for biogas production. Microbial pro-ventricular anaerobic digestion of ruminants can serve as a model for improvement of converting lignocellulosic biomass into energy. Anaerobic fungi are key players in the digestive system of various animals, they produce a plethora of plant carbohydrate hydrolysing enzymes. Combined with the invasive growth of their rhizoid system their contribution to cell wall polysaccharide decomposition may greatly exceed that of bacteria. The cellulolytic arsenal of anaerobic fungi consists of both secreted enzymes, as well as extracellular multi-enzyme complexes called cellulosomes. These complexes are extremely active, can degrade both amorphous and crystalline cellulose and are probably the main reason of cellulolytic efficiency of anaerobic fungi. The synergistic use of mechanical and enzymatic degradation makes anaerobic fungi promising candidates to improve biogas production from recalcitrant biomass. This chapter presents an overview about their biology and their potential for implementation in the biogas process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akin DE, Borneman WS (1990) Role of rumen fungi in fiber degradation. J Dairy Sci 73(10):3023–3032. doi:10.3168/jds.S0022-0302(90)78989-8

  2. Liggenstoffer AS, Youssef NH, Couger MB, Elshahed MS (2010) Phylogenetic diversity and community structure of anaerobic gut fungi (phylum Neocallimastigomycota) in ruminant and non-ruminant herbivores. ISME J 4(10):1225–1235. doi:10.1038/ismej.2010.49

  3. Lee SM, Guan LL, Eun JS, Kim CH, Lee SJ, Kim ET, Lee SS (2015) The effect of anaerobic fungal inoculation on the fermentation characteristics of rice straw silages. J Appl Microbiol 118(3):565–573. doi:10.1111/jam.12724

  4. Van der Giezen M (2009) Hydrogenosomes and mitosomes: conservation and evolution of functions. J Eukaryot Microbiol 56(3):221–231. doi:10.1111/j.1550-7408.2009.00407.x

  5. Youssef NH, Couger MB, Struchtemeyer CG, Liggenstoffer AS, Prade RA, Najar FZ, Atiyeh HK, Wilkins MR, Elshahed MS (2013) The genome of the anaerobic fungus Orpinomyces sp. strain C1A reveals the unique evolutionary history of a remarkable plant biomass degrader. Appl Environ Microbiol 79(15):4620–4634. doi:10.1128/AEM.00821-13

  6. Liu YJ, Hodson MC, Hall BD (2006) Loss of the flagellum happened only once in the fungal lineage: phylogenetic structure of kingdom Fungi inferred from RNA polymerase II subunit genes. BMC Evol Biol 6:74. doi:10.1186/1471-2148-6-74

  7. Liebetanz E (1910) Die parasitischen Protozoen des Wiederkäuermagens. Arch Protistenk 19:19–90

    Google Scholar 

  8. Orpin CG (1977) The occurrence of chitin in the cell walls of the rumen organisms Neocallimastix frontalis, Piromonas communis and Sphaeromonas communis. J Gen Microbiol 99(1):215–218. doi:10.1099/00221287-99-1-215

  9. Barr DJS (1980) An outline for the reclassification of the Chytridiales, and for a new order, the Spizellomycetales. Can J Bot 58(22):2380–2394. doi: 10.1139/b80-276

  10. Barr DJS (1988) How modern systematics relates to the rumen fungi. Bio Syst 21(3–4):351–356. doi:10.1016/0303-2647(88)90032-9

    CAS  Google Scholar 

  11. Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson OE, Huhndorf S, James T, Kirk PM, Lücking R, Thorsten Lumbsch H, Lutzoni F, Matheny PB, McLaughlin DJ, Powell MJ, Redhead S, Schoch CL, Spatafora JW, Stalpers JA, Vilgalys R, Aime MC, Aptroot A, Bauer R, Begerow D, Benny GL, Castlebury LA, Crous PW, Dai YC, Gams W, Geiser DM, Griffith GW, Gueidan C, Hawksworth DL, Hestmark G, Hosaka K, Humber RA, Hyde KD, Ironside JE, Kõljalg U, Kurtzman CP, Larsson KH, Lichtwardt R, Longcore J, Miadlikowska J, Miller A, Moncalvo JM, Mozley-Standridge S, Oberwinkler F, Parmasto E, Reeb V, Rogers JD, Roux C, Ryvarden L, Sampaio JP, Schüßler A, Sugiyama J, Thorn RG, Tibell L, Untereiner WA, Walker C, Wang Z, Weir A, Weiss M, White MM, Winka K, Yao YJ, Zhang N (2007) A higher-level phylogenetic classification of the Fungi. Mycol Res 111(5):509–547. doi:10.1016/j.mycres.2007.03.004

  12. Dagar SS et al. 2015 A new anaerobic fungus (Oontomyces anksri gen. nov., sp. nov.) from the digestive tract of the Indian camel (Camelus dromedarius). Fungal Biology

    Google Scholar 

  13. Gruninger RJ, Puniya AK, Callaghan TM, Edwards JE, Youssef N, Dagar SS, Fliegerová K, Griffith GW, Forster R, Tsang A, McAllister T, Elshahed MS (2014) Anaerobic fungi (phylum Neocallimastigomycota): advances in understanding their taxonomy, life cycle, ecology, role and biotechnological potential. FEMS Microbiol Ecol 90(1):1–17. doi:10.1111/1574-6941.12383

  14. Callaghan TM, Podmirseg SM, Hohlweck D, Edwards JE, Puniya AK, Dagar SS, Griffith GW (2015) Buwchfawromyces eastonii gen. nov., sp. nov.: a new anaerobic fungus (Neocallimastigomycota) isolated from buffalo faeces. MycoKeys 9:11–28. doi:10.3897/mycokeys.9.9032

  15. Koetschan C, Kittelmann S, Lu J, Al-Halbouni D, Jarvis GN, Muller T, Wolf M, Janssen PH (2014) Internal transcribed spacer 1 secondary structure analysis reveals a common core throughout the anaerobic fungi (Neocallimastigomycota). PLoS ONE 9(3):e91928. doi:10.1371/journal.pone.0091928

  16. Fliegerová K, Mrázek J, Voigt K (2012) Gut fungi: classification, evolution, life style and application. In: Fungi: types, environmental impact and role in disease, pp 3–19

    Google Scholar 

  17. Griffith GW, Baker S, Fliegerová K, Liggenstoffer AS, van der Giezen M, Voigt K, Beakes G (2010) Anaerobic fungi: Neocallimastigomycota. IMA Fungus 1(2):181–185

    Google Scholar 

  18. Fliegerová K, Mrázek J, Hoffmann K, Zábranská J, Voigt K (2010) Diversity of anaerobic fungi within cow manure determined by ITS1 analysis. Folia Microbiol 55(4):319–325. doi:10.1007/s12223-010-0049-y

  19. Wubah DA, Kim DSH (1996) Chemoattraction of anaerobic ruminal fungi zoospores to selected phenolic acids. Microbiol Res 151(3):257–262. doi:10.1016/S0944-5013(96)80022-X

  20. Ozkose E, Thomas BJ, Davies DR, Griffith GW, Theodorou MK (2001) Cyllamyces aberensis gen. nov. sp. nov., a new anaerobic gut fungus with branched sporangiophores isolated from cattle. Can J Bot 79(6):666–673. doi:10.1139/b01-047

  21. Ho YW, Bauchop T (1991) Morphology of three polycentric rumen fungi and description of a procedure for the induction of zoosporogenesis and release of zoospores in cultures. J Gen Microbiol 137(1):213–217. doi:10.1099/00221287-137-1-213

  22. Ho YW, Abdullah N, Jalaludin S (1988) Penetrating structures of anaerobic rumen fungi in cattle and swamp buffalo. J Gen Microbiol 134(1):177–181. doi:10.1099/00221287-134-1-177

  23. Orpin CG, Joblin K (1997) The rumen anaerobic fungi. In: The rumen microbial ecosystem. Springer, Berlin, pp 140–195

    Google Scholar 

  24. Orpin CG (1977) The rumen flagellate Piromonas communis: its life-history and invasion of plant material in the rumen. J Gen Microbiol 99(1):107–117. doi:10.1099/00221287-99-1-107

  25. Lowe SE, Griffith GW, Milne A, Theodorou MK, Trinci APJ (1987) The life cycle and growth kinetics of an anaerobic rumen fungus. J Gen Microbiol 133(7):1815–1827. doi:10.1099/00221287-133-7-1815

  26. France J, Theodorou MK, Davies DR (1990) Use of zoospore concentrations and life cycle parameters in determining the population of anaerobic fungi in the rumen ecosystem. J Theor Biol 147(3):413–422. doi:10.1016/S0022-5193(05)80496-5

  27. Theodorou MK, Davies DR, Jordan MGC, Trinci APJ, Orpin CG (1993) Comparison of anaerobic fungi in faeces and rumen digesta of newly born and adult ruminants. Mycol Res 97(10):1245–1252. doi:10.1016/S0953-7562(09)81293-8

  28. McGranaghan P, Davies JC, Griffith GW, Davies DR, Theodorou MK (1999) The survival of anaerobic fungi in cattle faeces. FEMS Microbiol Ecol 29(3):293–300. doi:10.1016/S0168-6496(99)00024-0

  29. Davies DR, Theodorou MK, Lawrence MIG, Trinci APJ (1993) Distribution of anaerobic fungi in the digestive tract of cattle and their survival in faeces. J Gen Microbiol 139(Pt 6):1395–1400. doi:10.1099/00221287-139-6-1395

  30. Brookman JL, Ozkose E, Rogers S, Trinci APJ, Theodorou MK (2000) Identification of spores in the polycentric anaerobic gut fungi which enhance their ability to survive. FEMS Microbiol Ecol 31(3):261–267. doi:10.1111/j.1574-6941.2000.tb00692.x

  31. Wubah DA, Fuller MS, Akin DE (1991) Resistant body formation in Neocallimastix sp., an anaerobic fungus from the rumen of a cow. Mycologia 83(1):40–47

    Google Scholar 

  32. Cheng YF, Edwards JE, Allison GG, Zhu WY, Theodorou MK (2009) Diversity and activity of enriched ruminal cultures of anaerobic fungi and methanogens grown together on lignocellulose in consecutive batch culture. Bioresour Technol 100(20):4821–4828. doi:10.1016/j.biortech.2009.04.031

  33. Nakashimada Y, Srinivasan K, Murakami M, Nishio N (2000) Direct conversion of cellulose to methane by anaerobic fungus Neocallimastix frontalis and defined methanogens. Biotechnol Lett 22(3):223–227. doi:10.1023/A:1005666428494

  34. Leis S, Dresch P, Peintner U, Fliegerovà K, Sandbichler AM, Insam H, Podmirseg SM (2014) Finding a robust strain for biomethanation: anaerobic fungi (Neocallimastigomycota) from the Alpine ibex (Capra ibex) and their associated methanogens. Anaerobe 29:34–43. doi:10.1016/j.anaerobe.2013.12.002

  35. Stams AJ (1994) Metabolic interactions between anaerobic bacteria in methanogenic environments. Antonie Van Leeuwenhoek 66(1–3):271–294. doi:10.1007/BF00871644

  36. Bernalier A, Fonty G, Bonnemoy F, Gouet P (1992) Degradation and fermentation of cellulose by the rumen anaerobic fungi in axenic cultures or in association with cellulolytic bacteria. Curr Microbiol 25(3):143–148. doi:10.1007/BF01571022

  37. Lee SS, Ha JK, Cheng K-J (2000) Relative contributions of bacteria, protozoa, and fungi to in vitro degradation of orchard grass cell walls and their interactions. Appl Environ Microbiol 66(9):3807–3813. doi:10.1128/AEM.66.9.3807-3813.2000

  38. Čater M, Zorec M, Logar RM (2014) Methods for improving anaerobic lignocellulosic substrates degradation for enhanced biogas production. Springer Science Reviews. doi:10.1007/s40362-014-0019-x

  39. Kabir MM, Forgács G, Sárvári Horváth I (2015) Biogas from Lignocellulosic Materials. In: Karimi K (ed) Lignocellulose-Based Bioproducts, vol 1. Biofuel and Biorefinery Technologies. Springer International Publishing, pp 207–251. doi:10.1007/978-3-319-14033-9_6

  40. Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66 (3):506–577. doi:10.1128/MMBR.66.3.506-577.2002

  41. Wen B, Yuan X, Li QX, Liu J, Ren J, Wang X, Cui Z (2015) Comparison and evaluation of concurrent saccharification and anaerobic digestion of Napier grass after pretreatment by three microbial consortia. Bioresour Technol 175:102–111. doi:10.1016/j.biortech.2014.10.043

  42. Cullen D, Kersten P (1992) Fungal enzymes for lignocellulose degradation. In: Applied molecular genetics of filamentous fungi. Chapman and Hall, London, pp 100–131

    Google Scholar 

  43. Wang HC, Chen YC, Hseu RS (2014) Purification and characterization of a cellulolytic multienzyme complex produced by Neocallimastix patriciarum J11. Biochem Biophys Res Commun 451(2):190–195. doi:10.1016/j.bbrc.2014.07.088

  44. Juturu V, Wu JC (2014) Microbial cellulases: engineering, production and applications. Renew Sustain Energy Rev 33:188–203. doi:10.1016/j.rser.2014.01.077

  45. Morgenstern I, Powlowski J, Tsang A (2014) Fungal cellulose degradation by oxidative enzymes: from dysfunctional GH61 family to powerful lytic polysaccharide monooxygenase family. Briefings Funct Genomics 13(6):471–481. doi:10.1093/bfgp/elu032

  46. Hemsworth GR, Henrissat B, Davies GJ, Walton PH (2014) Discovery and characterization of a new family of lytic polysaccharide monooxygenases. Nat Chem Biol 10(2):122–126. doi:10.1038/nchembio.1417

  47. Harhangi HR, Steenbakkers PJ, Akhmanova A, Jetten MS, van der Drift C, Op den Camp HJ (2002) A highly expressed family 1 beta-glucosidase with transglycosylation capacity from the anaerobic fungus Piromyces sp. E2. Biochim Biophys Acta 1574(3):293–303. doi:10.1016/S0167-4781(01)00380-3

  48. Ljungdahl LG (2008) The Cellulase/Hemicellulase System of the Anaerobic Fungus Orpinomyces PC-2 and Aspects of Its Applied Use. Ann N Y Acad Sci 1125(1):308–321. doi:10.1196/annals.1419.030

  49. Borneman WS, Hartley RD, Morrison WH, Akin DE, Ljungdahl LG (1990) Feruloyl and p-coumaroyl esterase from anaerobic fungi in relation to plant cell wall degradation. Appl Microbiol Biotechnol 33(3):345–351. doi:10.1007/BF00164534

  50. Borneman WS, Akin DE, Ljungdahl LG (1989) Fermentation products and plant cell wall-degrading enzymes produced by monocentric and polycentric anaerobic ruminal fungi. Appl Environ Microbiol 55(5):1066–1073

    Google Scholar 

  51. Dashtban M, Schraft H, Qin W (2009) Fungal bioconversion of lignocellulosic residues; opportunities & perspectives. Int J Bio Sci 5(6):578. doi:10.7150/ijbs.5.578

  52. Aylward JH, Gobius KS, Xue GP, Simpson GD, Dalrymple BP (1999) The Neocallimastix patriciarum cellulase, CelD, contains three almost identical catalytic domains with high specific activities on Avicel. Enzyme Microb Technol 24(8):609–614. doi:10.1016/S0141-0229(98)00167-7

  53. Berg B (2014) Decomposer Organisms. In: Berg B, Mc Claugherty C (eds)Plant Litter- Decomposition, Humus Formation, Carbon Sequestration, 3rd edn. Springer, Heidelberg, pp 35–52. doi:10.1007/978-3-642-38821-7_3

  54. McSweeney CS, Dulieu A, Katayama Y, Lowry JB (1994) Solubilization of lignin by the ruminal anaerobic fungus Neocallimastix patriciarum. Appl Environ Microbiol 60(8):2985–2989

    Google Scholar 

  55. Nagpal R, Puniya AK, Griffith GW, Goel G, Puniya M, Sehgal J, Paul, Singh K (2009) Anaerobic rumen fungi: potential and applications. In: Khachatourians GG, Arora DK, Rajendran TP, Srivastava AK (eds) Agriculturally important microorganisms, vol 1. Academic World International, New York, pp 375–393

    Google Scholar 

  56. Felix CR, Ljungdahl LG (1993) The cellulosome: the exocellular organelle of Clostridium. Ann Rev Microbiol 47(1):791–819. doi:10.1146/annurev.mi.47.100193.004043

  57. Garcia-Vallvé S, Romeu A, Palau J (2000) Horizontal gene transfer of glycosyl hydrolases of the rumen fungi. Mol Biol Evol 17(3):352–361

    Google Scholar 

  58. Nagy T, Tunnicliffe RB, Higgins LD, Walters C, Gilbert HJ, Williamson MP (2007) Characterization of a double dockerin from the cellulosome of the anaerobic fungus Piromyces equi. J Mol Biol 373(3):612–622. doi:10.1016/j.jmb.2007.08.007

  59. Steenbakkers PJ, Freelove A, Van Cranenbroek B, Sweegers BM, Harhangi HR, Vogels GD, Hazlewood GP, Gilbert HJ, Op den Camp HJ (2002) The major component of the cellulosomes of anaerobic fungi from the genus Piromyces is a family 48 glycoside hydrolase. DNA Seq J DNA Seq Mapp 13(6):313–320. doi:10.1080/1042517021000024191

  60. Zhou L, Xue GP, Orpin CG, Black GW, Gilbert HJ, Hazlewood GP (1994) Intronless celB from the anaerobic fungus Neocallimastix patriciarum encodes a modular family A endoglucanase. Biochem J 297(Pt 2):359–364

    Google Scholar 

  61. Haitjema CH, Solomon KV, Henske JK, Theodorou MK, O’Malley MA (2014) Anaerobic gut fungi: advances in isolation, culture, and cellulolytic enzyme discovery for biofuel production. Biotechnol Bioeng 111(8):1471–1482. doi:10.1002/bit.25264

  62. Shoham Y, Lamed R, Bayer EA (1999) The cellulosome concept as an efficient microbial strategy for the degradation of insoluble polysaccharides. Trends Microbiol 7(7):275–281. doi:10.1016/S0966-842X(99)01533-4

  63. Fontes CM, Gilbert HJ (2010) Cellulosomes: highly efficient nanomachines designed to deconstruct plant cell wall complex carbohydrates. Annu Rev Biochem 79:655–681. doi:10.1146/annurev-biochem-091208-085603

  64. Steenbakkers PJ, Li XL, Ximenes EA, Arts JG, Chen H, Ljungdahl LG, Op Den Camp HJ (2001) Noncatalytic docking domains of cellulosomes of anaerobic fungi. J Bacteriol 183(18):5325–5333. doi:10.1128/JB.183.18.5325-5333.2001

  65. Steenbakkers PJ, Irving JA, Harhangi HR, Swinkels WJ, Akhmanova A, Dijkerman R, Jetten MS, van der Drift C, Whisstock JC, Op den Camp HJ (2008) A serpin in the cellulosome of the anaerobic fungus Piromyces sp. strain E2. Mycol Res 112(Pt 8):999–1006. doi:10.1016/j.mycres.2008.01.021

  66. Sánchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27(2):185–194. doi:10.1016/j.biotechadv.2008.11.001

  67. Li X, Calza RE (1991) Fractionation of cellulases from the ruminal fungus Neocallimastix frontalis EB188. Appl Environ Microbiol 57(11):3331–3336

    Google Scholar 

  68. Teunissen MJ, de Kort GV, Op den Camp HJ, Vogels GD (1993) Production of cellulolytic and xylanolytic enzymes during growth of anaerobic fungi from ruminant and nonruminant herbivores on different substrates. Appl Biochem Biotechnol 39–40:177–189. doi:10.1007/BF02918988

  69. Joblin KN, Naylor GE (1989) Fermentation of woods by rumen anaerobic fungi. FEMS Microbiol Lett 65(1):119–122. doi:10.1111/j.1574-6968.1989.tb03608.x

  70. Biswas R, Persad A, Bisaria VS (2014) Production of Cellulolytic Enzymes. In: Bisaria VS, Kondo A (eds) Bioprocessing of renewable resources to commodity bioproducts, John Wiley & Sons, pp 105–132. doi:10.1002/9781118845394

  71. Li XL, Skory CD, Ximenes EA, Jordan DB, Dien BS, Hughes SR, Cotta MA (2007) Expression of an AT-rich xylanase gene from the anaerobic fungus Orpinomyces sp. strain PC-2 in and secretion of the heterologous enzyme by Hypocrea jecorina. Appl Microbiol Biotechnol 74(6):1264–1275. doi:10.1007/s00253-006-0787-6

  72. Tsai CT, Huang C-T (2008) Overexpression of the Neocallimastix frontalis xylanase gene in the methylotrophic yeasts Pichia pastoris and Pichia methanolica. Enzyme Microb Technol 42(6):459–465. doi:10.1016/j.enzmictec.2008.01.018

  73. Van Wyk N, Den Haan R, Van Zyl W (2010) Heterologous production of NpCel6A from Neocallimastix patriciarum in Saccharomyces cerevisiae. Enzyme Microb Technol 46(5):378–383. doi:10.1016/j.enzmictec.2009.11.005

  74. O’Malley MA, Theodorou MK, Kaiser CA (2012) Evaluating expression and catalytic activity of anaerobic fungal fibrolytic enzymes native topiromyces sp E2 in Saccharomyces cerevisiae. Environ Prog Sustain Energy 31(1):37–46. doi:10.1002/ep.10614

  75. Kuyper M, Hartog MM, Toirkens MJ, Almering MJ, Winkler AA, Dijken JP, Pronk JT (2005) Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Res 5(4–5):399–409. doi:10.1016/j.femsyr.2004.09.010

  76. Van Maris AJ, Winkler AA, Kuyper M, De Laat WT, Van Dijken JP, Pronk JT (2007) Development of efficient xylose fermentation in Saccharomyces cerevisiae: xylose isomerase as a key component. In: Olsson L (ed) Biofuels. Springer, Berlin pp 179–204. doi:10.1007/10_2007_057

  77. Madhavan A, Tamalampudi S, Ushida K, Kanai D, Katahira S, Srivastava A, Fukuda H, Bisaria VS, Kondo A (2009) Xylose isomerase from polycentric fungus Orpinomyces: gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol. Appl Microbiol Biotechnol 82(6):1067–1078. doi:10.1007/s00253-008-1794-6

  78. Bellissimi E, Van Dijken JP, Pronk JT, Van Maris AJ (2009) Effects of acetic acid on the kinetics of xylose fermentation by an engineered, xylose-isomerase-based Saccharomyces cerevisiae strain. FEMS Yeast Res 9(3):358–364. doi:10.1111/j.1567-1364.2009.00487.x

  79. Teunissen AWRH, De Bont JAM (2011) Xylose isomerase genes and their use in fermentation of pentose sugars. US 13/142,124, 29 Dec 2011

    Google Scholar 

  80. Mingardon F, Chanal A, López-Contreras AM, Dray C, Bayer EA, Fierobe H-P (2007) Incorporation of fungal cellulases in bacterial minicellulosomes yields viable, synergistically acting cellulolytic complexes. Appl Environ Microbiol 73(12):3822–3832. doi:10.1128/AEM.00398-07

  81. Procházka J, Mrázek J, Štrosová L, Fliegerová K, Zábranská J, Dohányos M (2012) Enhanced biogas yield from energy crops with rumen anaerobic fungi. Eng Life Sci 12(3):343–351. doi:10.1002/elsc.201100076

  82. Nah IW, Kang YW, Hwang K-Y, Song W-K (2000) Mechanical pretreatment of waste activated sludge for anaerobic digestion process. Water Res 34(8):2362–2368. doi:10.1016/S0043-1354(99)00361-9

  83. Climent M, Ferrer I, Baeza MdM, Artola A, Vázquez F, Font X (2007) Effects of thermal and mechanical pretreatments of secondary sludge on biogas production under thermophilic conditions. Chem Eng J 133(1):335–342. doi:10.1016/j.cej.2007.02.020

  84. Bougrier C, Delgenès J, Carrère H (2007) Impacts of thermal pre-treatments on the semi-continuous anaerobic digestion of waste activated sludge. Biochem Eng J 34(1):20–27. doi:10.1016/j.bej.2006.11.013

  85. Tanaka S, Kamiyama K (2002) Thermochemical pretreatment in the anaerobic digestion of waste activated sludge. Water Sci Technol J Int Assoc Water Pollut Res 46(10):173–179. doi:10.1016/S0273-1223(97)00169-8

  86. Goel R, Tokutomi T, Yasui H (2003) Anaerobic digestion of excess activated sludge with ozone pretreatment. Water Sci Technol J Int Assoc Water Pollut Res 47(12):207–214

    Google Scholar 

  87. Neis U, Nickel K, Tiehm A (2000) Enhancement of anaerobic sludge digestion by ultrasonic disintegration. Water Sci Technol 42(9):73–80

    Google Scholar 

  88. Appels L, Dewil R, Baeyens J, Degrève J (2008) Ultrasonically enhanced anaerobic digestion of waste activated sludge. Int J Sustain Eng 1(2):94–104. doi:10.1080/19397030802243319

  89. Miah MS, Tada C, Sawayama S (2004) Enhancement of biogas production from sewage sludge with the addition of Geobacillus sp. strain AT1 culture. 日本水処理生物学会誌 40(3):97–104. doi:10.2521/jswtb.40.97

  90. Bagi Z, Ács N, Bálint B, Horváth L, Dobó K, Perei KR, Rákhely G, Kovács KL (2007) Biotechnological intensification of biogas production. Appl Microbiol Biotechnol 76(2):473–482. doi:10.1007/s00253-007-1009-6

  91. Ghosh A, Bhattacharyya B (1999) Biomethanation of white rotted and brown rotted rice straw. Bioprocess Eng 20(4):297–302. doi:10.1007/s004490050594

  92. Wagner AO, Schwarzenauer T, Illmer P (2013) Improvement of methane generation capacity by aerobic pre-treatment of organic waste with a cellulolytic Trichoderma viride culture. J Environ Manage 129:357–360. doi:10.1016/j.jenvman.2013.07.030

  93. Fliegerová K, Procházka J, Mrázek J, Novotná Z, Štrosová L, Dohányos M (2012) Biogas and rumen fungi. In: Litonjua R, Cvetkovski I (eds) Biogas: production, consumption and applications, Nova Science Pub Inc, pp 161–180

    Google Scholar 

  94. Nkemka VN, Gilroyed B, Yanke J, Gruninger R, Vedres D, McAllister T, Hao X (2015) Bioaugmentation with an anaerobic fungus in a two-stage process for biohydrogen and biogas production using corn silage and cattail. Biores Technol 185:79–88. doi:10.1016/j.biortech.2015.02.100

  95. Lockhart RJ, Van Dyke MI, Beadle IR, Humphreys P, McCarthy AJ (2006) Molecular biological detection of anaerobic gut fungi (Neocallimastigales) from landfill sites. Appl Environ Microbiol 72(8):5659–5661. doi:10.1128/AEM.01057-06

  96. Ho Y, Barr D (1995) Classification of anaerobic gut fungi from herbivores with emphasis on rumen fungi from Malaysia. Mycologia 87(5):655–677. doi:10.2307/3760810

  97. Orpin CG (1994) Anaerobic fungi: taxonomy, biology and distribution in nature. In: Mountfort DC, Orpin CG (eds) Anaerobic fungi: biology, ecology and function, CRC Press, pp 1–46

    Google Scholar 

  98. Darken MA (1961) Applications of fluorescent brighteners in biological techniques. Science 133(3465):1704–1705. doi:10.1126/science.133.3465.1704

  99. Hoch HC, Galvani CD, Szarowski DH, Turner JN (2005) Two new fluorescent dyes applicable for visualization of fungal cell walls. Mycologia 97(3):580–588. doi:10.3852/mycologia.97.3.580

  100. Theodorou MK, Gill M, King-Spooner C, Beever DE (1990) Enumeration of anaerobic chytridiomycetes as thallus-forming units: novel method for quantification of fibrolytic fungal populations from the digestive tract ecosystem. Appl Environ Microbiol 56(4):1073–1078

    Google Scholar 

  101. Joblin KN (1981) Isolation, enumeration, and maintenance of rumen anaerobic fungi in roll tubes. Appl Environ Microbiol 42(6):1119–1122

    Google Scholar 

  102. Theodorou MK, Davies DR, Nielsen BB, Lawrence MI, Trinci APJ (1995) Determination of growth of anaerobic fungi on soluble and cellulosic substrates using a pressure transducer. Microbiology 141(3):671–678. doi:10.1099/13500872-141-3-671

  103. Li XL, Chen H, Ljungdahl LG (1997) Monocentric and polycentric anaerobic fungi produce structurally related cellulases and xylanases. Appl Environ Microbiol 63(2):628–635

    Google Scholar 

  104. Novotná Z, Procházka J, Simůnek J, Fliegerová K (2010) Xylanases of anaerobic fungus Anaeromyces mucronatus. Folia Microbiol 55(4):363–367. doi:10.1007/s12223-010-0059-9

  105. Denman SE, McSweeney CS (2006) Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiol Ecol 58(3):572–582. doi:10.1111/j.1574-6941.2006.00190.x

  106. Edwards JE, Kingston-Smith AH, Jimenez HR, Huws SA, Skot KP, Griffith GW, McEwan NR, Theodorou MK (2008) Dynamics of initial colonization of nonconserved perennial ryegrass by anaerobic fungi in the bovine rumen. FEMS Microbiol Ecol 66(3):537–545. doi:10.1111/j.1574-6941.2008.00563.x

  107. Fliegerová K, Mrázek J, Voigt K (2006) Differentiation of anaerobic polycentric fungi by rDNA PCR-RFLP. Folia Microbiol 51(4):273–277. doi:10.1007/BF02931811

  108. Lwin KO, Hayakawa M, Ban-Tokuda T, Matsui H (2011) Real-time PCR assays for monitoring anaerobic fungal biomass and population size in the rumen. Curr Microbiol 62(4):1147–1151. doi:10.1007/s00284-010-9843-7

  109. Marano AV, Gleason FH, Barlocher F, Pires-Zottarelli CL, Lilje O, Schmidt SK, Rasconi S, Kagami M, Barrera MD, Sime-Ngando T, Boussiba S, de Souza JI, Edwards JE (2012) Quantitative methods for the analysis of zoosporic fungi. J Microbiol Methods 89(1):22–32. doi:10.1016/j.mimet.2012.02.003

  110. Dagar SS, Kumar S, Mudgil P, Singh R, Puniya AK (2011) D1/D2 domain of large-subunit ribosomal DNA for differentiation of Orpinomyces spp. Appl Environ Microbiol 77(18):6722–6725. doi:10.1128/AEM.05441-11

  111. Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Fungal Barcoding C, Fungal Barcoding Consortium Author L (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci USA 109(16):6241–6246. doi:10.1073/pnas.1117018109

  112. Tan H, Cao L (2014) Fungal diversity in sheep (Ovis aries) and cattle (Bos taurus) feces assessed by comparison of 18S, 28S and ITS ribosomal regions. Ann Microbiol 64(3):1423–1427. doi:10.1007/s13213-013-0787-6

  113. Sehgal JP, Jit D, Puniya AK, Singh K (2008) Influence of anaerobic fungal administration on growth, rumen fermentation and nutrient digestion in female buffalo calves. J Anim Feed Sci 17:510–518

    Google Scholar 

Download references

Acknowledgments

TMC is grateful for funding from the Aberystwyth Postgraduate Research Studentship. VD is grateful for funding of the project BE/14/22 from the Bavarian State Ministry of Food, Agriculture and Forestry and the Bavarian State Ministry of Economics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veronika Dollhofer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dollhofer, V., Podmirseg, S.M., Callaghan, T.M., Griffith, G.W., Fliegerová, K. (2015). Anaerobic Fungi and Their Potential for Biogas Production. In: Guebitz, G., Bauer, A., Bochmann, G., Gronauer, A., Weiss, S. (eds) Biogas Science and Technology. Advances in Biochemical Engineering/Biotechnology, vol 151. Springer, Cham. https://doi.org/10.1007/978-3-319-21993-6_2

Download citation

Publish with us

Policies and ethics