Skip to main content

Brain-Inspired Architectures for Nanoelectronics

  • Chapter
  • First Online:
CHIPS 2020 VOL. 2

Part of the book series: The Frontiers Collection ((FRONTCOLL))

  • 2154 Accesses

Abstract

Mapping brain-like structures and processes into electronic substrates has recently seen a revival with the availability of deep-submicron CMOS technology. The basic idea is to exploit the massive parallelism of such circuits and to create low-power and fault-tolerant information-processing systems. Aiming at overcoming the big challenges of deep-submicron CMOS technology (power wall, reliability, design complexity), bio-inspiration offers alternative ways to (embedded) artificial intelligence. The challenge is to understand, design, build, and use new architectures for nanoelectronic systems, which unify the best of brain-inspired information processing concepts and of nanotechnology hardware, including both algorithms and architectures. Obviously, the brain could serve as an inspiration at several different levels, when investigating architectures spanning from innovative system-on-chip to biologically neural inspired. This chapter introduces basic properties of biological brains and general approaches to realize them in nanoelectronics. Modern implementations are able to reach the complexity-scale of large functional units of biological brains, and they feature the ability to learn by plasticity mechanisms found in neuroscience. Combined with high-performance programmable logic and elaborate software tools, such systems are currently evolving into user-configurable non-von-Neumann computing systems, which can be used to implement and test novel computational paradigms. Hence, big brain research programs started world-wide. Four projects from the largest programs on brain-like electronic systems in Europe (Human Brain Project) and in the US (SyNAPSE) will be outlined in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mead, C., Ismail, M. (eds.): Analog VLSI Implementation of Neural Systems. Springer, Berlin (1989). ISBN 978-0-7923-9040-4

    Google Scholar 

  2. Steinbuch, K.: Adaptive networks using learning matrices. Kybernetik 2, 148–152 (1965)

    Google Scholar 

  3. Widrow, B.: Pattern recognition and adaptive control. IEEE Trans. Appl. Indus. 83(74), 269–277 (1964)

    Article  Google Scholar 

  4. IJCNN, International Joint Conference on Neural Networks, http://www.ijcnn.org

  5. NIPS, Neural Information Processing Systems, http://nips.cc

  6. Kohonen, T., et al. (eds.): Artificial neural networks. In: Proceedings of the first ICANN in Espoo, Finland, vol. 1, 2. North-Holland, Amsterdam (1991). ISBN 0 444 89178 1

    Google Scholar 

  7. Ramacher, U., Rückert, U. (eds.): VLSI Design of Neural Networks. Kluwer Academic, Boston (1991)

    MATH  Google Scholar 

  8. MicroNeuro: Conference on “Microelectronics for Neural Networks”; Dortmund, Germany (1990); Munich, Germany (1991); Edinburgh, Scotland (1993); Torino, Italy (1994); Lausanne, Switzerland (1996); Dresden, Germany (1997); Granada, Spain (1999)

    Google Scholar 

  9. Hammerstrom, D., Nguyen, N.: System design for a second generation neurocomputer. In: Proceedings of the IJCNN II, pp. 80–83 (1990)

    Google Scholar 

  10. Data booklet for Intel 80170NX (ETANN) Electrically Trainable Analog Neural Network. Intel Corp. (1991)

    Google Scholar 

  11. Ramacher, U.: SYNAPSE: a neurocomputer that synthesizes neural algorithms on a parallel systolic engine. J. Parallel Distrib. Comput. 14(3), 306–318 (1992)

    Article  Google Scholar 

  12. Brain Facts, Society of Neuroscience, www.snf.org (2008)

  13. www.wikipedia.org/Brain (Dec 2015)

  14. Chudler, E.H.: Neuroscience for kids: http://faculty.washington.edu/chudler/synapse.html (Dec. 2015)

  15. Stufflebeam, R.: Neurons, synapses, action potentials, and neurotransmission. The Mind Project, www.mind.ilstu.edu/curriculum/neurons_intro (2008)

  16. Martini, F.H., Nath, J.L.: Neural tissue, chapter 12. In: Fundamentals of Anatomy and Physiology. Prentice-Hall, New Jersey (2008)

    Google Scholar 

  17. Sengupta, B. et al.: Action potential energy efficiency varies among neuron types in vertebrates and invertebrates, PLoS Computat. Biol. (2010). doi:10.1371/journal.pcbi.1000840

    Google Scholar 

  18. Furber, S., Temple, S.: Neural systems engineering. J. R. Soc. Interface 4(13), 193–206 (2007)

    Article  Google Scholar 

  19. Höfflinger, B.: Chips 2020, chapter 18, vol. 1. Springer, Berlin (2012)

    Google Scholar 

  20. Markram, H.: The blue brain project. Nat. Rev. 7, 153–160 (2006). http://bluebrain.epfl.ch

    Google Scholar 

  21. Inne, P.: Digital connectionist hardware: current problems and future challenges, biological and artificial computation: from neuroscience to technology. Lecture Notes in Computer Science, vol. 1240, pp. 688–713. Springer, Berlin (1997)

    Google Scholar 

  22. Palm, G., et al.: Neural associative memories. In: Krikelis, A., Weems, C.C. (eds.) Associative Processing and Processors, pp. 307–326. IEEE CS Press, Los Alamitos (1997)

    Google Scholar 

  23. Beiu, V., Quintana, J.M., Avedillo, M.J.: VLSI implementations of threshold gates—a comprehensive survey. Spec. Issue Hardware Implementations Neural Netw. IEEE Trans. Neural Netw. 14(5), 1217–1243 (2003)

    Article  Google Scholar 

  24. Izhikevich, E.M.: Which model to use for cortical spiking neurons? IEEE Trans. Neural Netw. 15, 1063–1070 (2004)

    Article  Google Scholar 

  25. Strey, A.: Spezifikation und parallele Simulation neuronaler Netze, Fortschrittbericht, vol. 661. Reihe Informatik/Kommunikationstechnik, VDI-Verlag (2001)

    Google Scholar 

  26. Eichner, H. et al.: Neural simulations on multi-core architectures. Front. Neuroinformatics 3 (2009). doi:10.3389/neuro.11.021.2009

  27. Gerland, M., et al.: Parallel Computing Experiences with CUDA. IEEE Micro. 28(4), 13–27 (2008)

    Article  Google Scholar 

  28. Oh, K.S., Jung, K.: GPU implementation of neural networks. Patt. Recogn. 37(6), 1311–1314 (2004)

    Google Scholar 

  29. Omondi, A.R., Rajapakse, J.C. (eds.): FPGA Implementations of Neural Networks. Springer, Berlin (2005)

    Google Scholar 

  30. Koester, M., et al.: Design optimizations for tiled partially reconfigurable systems. IEEE Trans. Very Large Scale Integr. Syst. 19(6), 1048–1061 (2011)

    Article  Google Scholar 

  31. Porrmann, M., Witkowski, U., Rückert, U.: Implementation of self-organizing feature maps in reconfigurable hardware, in [29], pp. 253–276. Springer, Berlin (2005)

    Google Scholar 

  32. Klar, H., Ramacher, U. (eds.): Microelectronics for Neural Networks. VDI Fortschrittberichte, Reihe 21, Nr.42 (1989)

    Google Scholar 

  33. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerves. J. Physiol. 117, 500–544 (1952)

    Google Scholar 

  34. Djurfeldt, M., et al.: Brain-scale simulation of the neocortex on the IBM Blue Gene/L supercomputer. IBM J. Res. Dev. 52(1/2), 31–41 (2008)

    Article  Google Scholar 

  35. www.humanbrainproject.eu

  36. Furber, S., et al.: Overview of the SpiNNaker system architecture. IEEE Trans. Comput. 62(12), 2454–2467 (2013)

    Article  MathSciNet  Google Scholar 

  37. Mahowald, M.: VLSI analogs of neural visual processing: A synthesis of form and function, PhD thesis, California Institute of Technology (1992)

    Google Scholar 

  38. http://www.darpa.mil/Our_Work/DSO/Programs/Systems_of_Neuromorphic_Adaptive_Plastic_Scalable_Electronics_%28SYNAPSE%29.aspx

  39. Merolla, P.A., et al.: A digital neurosynaptic core using embedded crossbar memory with 45 pJ per spike in 45 nm. In: Proceedings of IEEE CICC, pp. 19–21 (2011)

    Google Scholar 

  40. Merolla, P.A., et al.: A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345, 668–673 (2014)

    Article  ADS  Google Scholar 

  41. Cassidy, A.S., et al.: Real-time scalable cortical computing at 46 Giga-synaptic OPS/Watt with ~100× speedup in time-to-solution and ~10,000× reduction in energy-to-solution. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 27–38 (2014)

    Google Scholar 

  42. http://brainscales.kip.uni-heidelberg.de

  43. http://www.facets-project.org; http://facets.kip.uni-heidelberg.de

  44. Brette, R., Gerstner, W.: Adaptive exponential integrate-and-fire model as an effective description of neural activity. J. Neurophysiol. 94, 3637–3642 (2005)

    Article  Google Scholar 

  45. Schemmel, J., Fieres, J., Meier, K.: Wafer-scale integration of analog neural networks. In: Proceedings of the International Joint Conference on Neural Networks (IJCNN) (2008)

    Google Scholar 

  46. Schemmel, J., et al.: A wafer-scale neuromorphic hardware system for large-scale neuron modeling. In: Proceedings of the IEEE International Symposium on Circuits and Systems (2010)

    Google Scholar 

  47. Silver, R., et al.: Neurotech for neuroscience: unifying concepts, organizing principles, and emerging tools. J. Neurosci. 27, 11807–11819 (2007)

    Google Scholar 

  48. Benjamin, B.V., et al.: Neurogrid: a mixed-analog-digital multichip system for large-scale neural simulation. Proc. IEEE 102(5), 699–716 (2014)

    Article  Google Scholar 

  49. Philipp, S. et al.: Interconnecting VLSI spiking neural networks using isochronous connections. In: Proceedings of 99th International Work-Conference on Artificial Neural Networks, Springer LNCS 4507, pp. 471–478 (2007)

    Google Scholar 

  50. Ziv, N.: Principles of glutamatergic synapse formation: seeing the forest for the trees. Curr. Opin. Neurobiol. 11, 536–543 (2001)

    Article  Google Scholar 

  51. Eden, A.H., et al. (eds): Singularity Hypotheses, The Frontiers Collection. Springer, Berlin (2012)

    Google Scholar 

  52. Ramacher, U., von der Marlsburg, C. (eds): On the Construction of Artificial Brains. Springer, Berlin (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Rueckert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rueckert, U. (2016). Brain-Inspired Architectures for Nanoelectronics. In: Höfflinger, B. (eds) CHIPS 2020 VOL. 2. The Frontiers Collection. Springer, Cham. https://doi.org/10.1007/978-3-319-22093-2_18

Download citation

Publish with us

Policies and ethics