Skip to main content

Discrete Transfinite Computation

  • Chapter
  • First Online:
Turing’s Revolution

Abstract

We describe various computational models based initially, but not exclusively, on that of the Turing machine, that are generalized to allow for transfinitely many computational steps. Variants of such machines are considered that have longer tapes than the standard model, or that work on ordinals rather than numbers. We outline the connections between such models and the older theories of recursion in higher types, generalized recursion theory, and recursion on ordinals such as α-recursion. We conclude that, in particular, polynomial time computation on ω-strings is well modelled by several convergent conceptions.

AMS Classifications: 03D10, 03D65, 03E45, 03D30

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Beckmann, S. Buss, S.-D. Friedman, Safe Recursive Set Functions (Centre de Recerca Matematica Document Series, Barcelona, 2012)

    MATH  Google Scholar 

  2. S. Bellantoni, S. Cook, A new recursion-theoretic characterization of the poly-time functions. Comput. Complex. 2, 97–110 (1992)

    Article  Google Scholar 

  3. L. Blum, M. Shub, S. Smale, On a theory of computation and complexity over the real numbers. Not. Am. Math. Soc. 21(1), 1–46 (1989)

    Article  Google Scholar 

  4. J.P. Burgess, The truth is never simple. J. Symb. Log. 51(3), 663–681 (1986)

    Article  MathSciNet  Google Scholar 

  5. M. Carl, T. Fischbach, P. Koepke, R. Miller, M. Nasfi, G. Weckbecker, The basic theory of infinite time register machines. Arch. Math. Log. 49(2), 249–273 (2010)

    Article  MathSciNet  Google Scholar 

  6. B. Dawson, Ordinal time Turing computation. Ph.D. thesis, Bristol (2009)

    Google Scholar 

  7. H. Field, A revenge-immune solution to the semantic paradoxes. J. Philos. Log. 32(3), 139–177 (2003)

    Article  MathSciNet  Google Scholar 

  8. S.-D. Friedman, P.D. Welch, Two observations concerning infinite time Turing machines, in BIWOC 2007 Report, ed. by I. Dimitriou (Hausdorff Centre for Mathematics, Bonn, 2007), pp. 44–47. Also at http://www.logic.univie.ac.at/sdf/papers/joint.philip.ps

  9. S.-D. Friedman, P.D. Welch, Hypermachines. J. Symb. Log. 76(2), 620–636 (2011)

    Article  Google Scholar 

  10. E. Gold, Limiting recursion. J. Symb. Log. 30(1), 28–48 (1965)

    Article  MathSciNet  Google Scholar 

  11. J.D. Hamkins, A. Lewis, Infinite time Turing machines. J. Symb. Log. 65(2), 567–604 (2000)

    Article  MathSciNet  Google Scholar 

  12. J.D. Hamkins, A. Lewis, Post’s problem for supertasks has both positive and negative solutions. Arch. Math. Log. 41, 507–523 (2002)

    Article  MathSciNet  Google Scholar 

  13. J.D. Hamkins, R. Miller, Post’s problem for ordinal register machines: an explicit approach. Ann. Pure Appl. Log. 160(3), 302–309 (2009)

    Article  MathSciNet  Google Scholar 

  14. J.D. Hamkins, D. Seabold, Infinite time Turing machines with only one tape. Math. Log. Q. 47(2), 271–287 (2001)

    Article  MathSciNet  Google Scholar 

  15. H.G. Herzberger, Notes on naive semantics. J. Philos. Log. 11, 61–102 (1982)

    Article  MathSciNet  Google Scholar 

  16. S.C. Kleene, Recursive quantifiers and functionals of finite type I. Trans. Am. Math. Soc. 91, 1–52 (1959)

    MATH  Google Scholar 

  17. S.C. Kleene, Turing-machine computable functionals of finite type I, in Proceedings 1960 Conference on Logic, Methodology and Philosophy of Science (Stanford University Press, 1962), pp. 38–45

    Google Scholar 

  18. S.C. Kleene, Turing-machine computable functionals of finite type II. Proc. Lond. Math. Soc. 12, 245–258 (1962)

    Article  MathSciNet  Google Scholar 

  19. S.C. Kleene, Recursive quantifiers and functionals of finite type II. Trans. Am. Math. Soc. 108, 106–142 (1963)

    MathSciNet  MATH  Google Scholar 

  20. A. Klev, Magister Thesis (ILLC, Amsterdam, 2007)

    Google Scholar 

  21. P. Koepke, Turing computation on ordinals. Bull. Symb. Log. 11, 377–397 (2005)

    Article  Google Scholar 

  22. P. Koepke, M. Koerwien, Ordinal computations. Math. Struct. Comput. Sci. 16(5), 867–884 (2006)

    Article  MathSciNet  Google Scholar 

  23. P. Koepke, R. Miller, An enhanced theory of infinite time register machines, in Logic and the Theory of Algorithms, ed. by A. Beckmann et al. Springer Lecture Notes Computer Science, vol. 5028 (Springer, Swansea, 2008), pp. 306–315

    Google Scholar 

  24. P. Koepke, B. Seyfferth, Ordinal machines and admissible recursion theory. Ann. Pure Appl. Log. 160(3), 310–318 (2009)

    Article  MathSciNet  Google Scholar 

  25. P. Koepke, R. Siders, Computing the recursive truth predicate on ordinal register machines, in Logical Approaches to Computational Barriers, ed. by A. Beckmann et al. Computer Science Report Series (Swansea, 2006), p. 21

    Google Scholar 

  26. P. Koepke, P.D. Welch, A generalised dynamical system, infinite time register machines, and \(\Pi _{1}^{1}\)-\(\mathop{CA}\nolimits _{0}\), in Proceedings of CiE 2011, Sofia, ed. by B. Löwe, D. Normann, I. Soskov, A. Soskova (2011)

    Google Scholar 

  27. B. Löwe, Revision sequences and computers with an infinite amount of time. J. Log. Comput. 11, 25–40 (2001)

    Article  MathSciNet  Google Scholar 

  28. M. Minsky, Computation: Finite and Infinite Machines (Prentice-Hall, Upper Saddle River, 1967)

    MATH  Google Scholar 

  29. H. Putnam, Trial and error predicates and the solution to a problem of Mostowski. J. Symb. Log. 30, 49–57 (1965)

    Article  MathSciNet  Google Scholar 

  30. H. Rogers, Recursive Function Theory. Higher Mathematics (McGraw, New York, 1967)

    MATH  Google Scholar 

  31. G.E. Sacks, Post’s problem, admissible ordinals and regularity. Trans. Am. Math. Soc. 124, 1–23 (1966)

    MathSciNet  MATH  Google Scholar 

  32. G.E. Sacks, Higher Recursion Theory. Perspectives in Mathematical Logic (Springer, New York, 1990)

    Google Scholar 

  33. J. Shepherdson, H. Sturgis, Computability of recursive functionals. J. Assoc. Comput. Mach. 10, 217–255 (1963)

    Article  MathSciNet  Google Scholar 

  34. R.A. Shore, Splitting an α recursively enumerable set. Trans. Am. Math. Soc. 204, 65–78 (1975)

    MathSciNet  MATH  Google Scholar 

  35. R.A. Shore, The recursively enumerable α-degrees are dense. Ann. Math. Log. 9, 123–155 (1976)

    Article  MathSciNet  Google Scholar 

  36. J. Thomson, Tasks and supertasks. Analysis 15(1), 1–13 (1954/1955)

    Google Scholar 

  37. P.D. Welch, Minimality arguments in the infinite time Turing degrees, in Sets and Proofs: Proc. Logic Colloquium 1997, Leeds, ed. by S.B.Cooper, J.K.Truss. London Mathematical Society Lecture Notes in Mathematics, vol. 258 (Cambridge University Press, Cambridge, 1999)

    Google Scholar 

  38. P.D. Welch, Eventually infinite time Turing degrees: infinite time decidable reals. J. Symb. Log. 65(3), 1193–1203 (2000)

    Article  MathSciNet  Google Scholar 

  39. P.D. Welch, Post’s and other problems in higher type supertasks, in Classical and New Paradigms of Computation and Their Complexity Hierarchies. Papers of the Conference Foundations of the Formal Sciences III, ed. by B. Löwe, B. Piwinger, T. Räsch. Trends in Logic, vol. 23 (Kluwer, Dordrecht, 2004), pp. 223–237

    Google Scholar 

  40. P.D. Welch, Ultimate truth vis à vis stable truth. Rev. Symb. Log. 1(1), 126–142 (2008)

    Article  MathSciNet  Google Scholar 

  41. P.D. Welch, Characteristics of discrete transfinite Turing machine models: halting times, stabilization times, and normal form theorems. Theor. Comput. Sci. 410, 426–442 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. D. Welch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Welch, P.D. (2015). Discrete Transfinite Computation. In: Sommaruga, G., Strahm, T. (eds) Turing’s Revolution. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-22156-4_6

Download citation

Publish with us

Policies and ethics